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Abstract: Residential buildings are an important sector in the urban environment as they provide
essential dwelling space, but they are also responsible for a significant share of final energy consump-
tion. In addition, residential buildings that were built with outdated standards usually face difficulty
meeting current energy performance standards. The situation is especially common in Europe, as
35% of buildings were built over fifty years ago. Building retrofitting techniques provide a choice
to improve building energy efficiency while maintaining the usable main structures, as opposed
to demolition. The retrofit assessment requires the building stock information, including energy
demand and material compositions. Therefore, understanding the building stock at scale becomes a
critical demand. A significant piece of information is the building geometry, which is essential in
building energy modelling and stock analysis. In this investigation, an approach has been developed
to automatically measure building dimensions from remote sensing data. The approach is built on a
combination of unsupervised machine learning algorithms, including K-means++, DBSCAN and
RANSAC. This work is also the first attempt at using a vehicle-mounted data-capturing system to
collect data as the input to characterise building geometry. The developed approach is tested on
an automatically built and labelled point cloud model dataset of residential buildings and shows
capability in acquiring comprehensive geometry information while keeping a high level of accuracy
when processing an intact model.

Keywords: building dimension measurement; urban building energy modelling; building reconstruc-
tion; building stock

1. Introduction

Global warming is a critical worldwide challenge. The United Nations made climate
action one of their seventeen 2030 sustainable development goals in 2005 [1]. Thus, globally
reducing carbon emissions should be a priority. In the UK in 2019, 15% of the total
greenhouse gas emissions are from residential buildings [2]. Residential buildings also
consume 29% of total energy [3]. A way to combat the emissions from the residential sector
is through widespread retrofit, although deployment rates are currently slow. Therefore,
retrofit is recommended as an infrastructure priority by the Climate Change Committee
in the UK [4]. However, analysing if and how a building should be retrofitted is highly
labour-intensive and time-inefficient [5]. This is because an on-site survey is still the main
approach to making a retrofit plan. If we are going to make retrofit plans for residential
buildings at scale, a highly automated solution needs to be developed to speed up solution
identification and deployment.

In [5,6], a holistic framework is proposed to use a vehicle-mounted data-capturing
system to realise large-scale data collection, characterisation and accounting for urban
stocks. The proposed framework shows great potential in building a scalable multi-spectral
built-environment digital twin that can provide the comprehensive information required for
planning housing retrofit [5]. However, there remains a large gap between data collection
and the extraction of useful information.
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Vehicle-mounted data capture provides an efficient way to collect urban environmen-
tal data at scale [6]. In comparison with using an Unmanned Aerial Vehicle (UAV), a
terrestrial vehicle is more cost-effective and convenient to use, especially at scale. For a
comprehensive building facade data capture, a UAV needs to be operated, moving both
in vertical and horizontal directions and circulating around targets [7]. Therefore, move-
ment pathways will become highly complex and will need to be carefully designed if
UAV-based comprehensive building reconstruction is promoted to large-scale data capture,
e.g., at a neighbourhood or city scale. In this case, a highly complex data capture process
will become inevitable. State-of-the-art approaches using UAVs in capturing building
information at scale heavily focus on capturing bottom-view data to modelling building
roof structure [8–10]. In this case, significant information about a facade, such as window
dimensions and distributions, is missing.

Building geometry is critical to understanding urban stocks, especially for building
retrofit purposes: it is a key component to building a representative digital building model
that can be utilised to model a building’s thermal conditions in modelling tools such
as EnergyPlus [11]. The information is also critical for building stock analysis research
to estimate quantities of construction materials found in existing buildings in order to
plan a circular economy [12]. However, the building geometry, such as building frame
dimensions, window locations and sizes, is not always available: surveyors are still required
to physically measure the target building on-site to collect the building geometry data [5].

In the architecture industry, the Level-of-Detail (LoD) standard [13] is usually em-
ployed to assess how accurately a digital building model is constructed by utilising the
building geometry data. The standard contains five levels: level-0 is a 2.5D building planar
distribution polygon; level-1 is a prismatic model extruded from level-0 with building
height information; level-2 is with the additional roof structure in comparison with the level-
1 standard; level-3 and level-4 add extra exterior component details and interior structures
on their priors, respectively. Figure 1 demonstrates the five levels of the LoD standard.

Figure 1. The five levels of the LoD standard, from the leftmost 2.5D polygon LoD-0, to the right-
most complex 3D LoD-4, which also contains the interior structures. This figure is reprinted with
permission from Ref. [14]. Copyright 2016, Elsevier.

To reconstruct buildings under the LoD standard model, collecting raw building data
is the primary step. In state-of-the-art approaches developed for building reconstruction
purposes, the collected raw data are used to build an elementary building model. A widely
adopted elementary building model type is the point cloud model [7,15,16]. The point
cloud model consists of structured points in space that represent the 3D shape of an
object. Approaches are then developed to automatically measure the buildings to generate
LoD standard models from the raw point cloud model. These developed approaches are
commonly classified into two types: top-down and bottom-up approaches [17].

The top-down approach defines a building’s primitive library first and then uses a
search algorithm to fit the building’s raw model with the predefined primitive library [7,18].
The top-down approach can well maintain the uniformity of the individual reconstructed
building models. However, the scope of the primitive library will limit the applicability
of the approach to buildings with more complex shapes. The bottom-up approach is also
known as the data-driven approach. This approach aims to detect the low-level features
of buildings such as vertices, eave lines or their symmetry information. This information
is then used to assemble the building model. However, the bottom-up method requires
applying strong prior knowledge such as rectilinearity on the low-level feature extraction,
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which also affects the universality of the developed methods [10,19,20]. Both the two
approaches have achieved success in LoD standard reconstruction using various data
sources, including aerial images, point clouds and satellite data. However, attempts to
use street-view, image-generated point clouds on scalable building measurement for LoD
standard reconstruction are still lacking.

This study serves the scalable building energy modelling and material stock quantifica-
tion target through filling in the research gap of building geometry information acquisition
difficulty. The overall contribution of this paper is the development of a novel approach to
automatically measure building point cloud models, which are generated from street-view-
style images using photogrammetry. The detailed contributions are summarised thus:

1. proposal of a novel top-down approach, completely based on street-view style image
data, on building reconstruction;

2. acquiring building geometry data that is essential for building energy analysis using
the reconstructed building model.

2. Methodology—Residential Building Geometry Characterisation
2.1. Data Collection and Pre-Processing

The data used in this study are captured by an urban stock research data-capturing
system. The data-capturing system can simultaneously collect the visual image, LiDAR
point cloud, thermal image, hyperspectral image and position and time data. The data
capture system is mounted on a vehicle to drive in the urban environment to collect
the data required. Figure 2 demonstrates the data-capturing system MARVEL (Multi-
spectral Advanced Research VEhicLe), which is used in this paper for data collection. In
this study, we only collect the visual image data using the spherical 360◦ Teledyne [21]
Ladybug5+ camera rig, which contains six separate Sony IMX264 CMOS sensors with
2048 × 2448 pixels resolution. The six cameras are oriented, with one on top pointing
upwards and the other five positioned horizontally along the sides, forming a regular
pentagon. The camera rig can provide a field of view of 90% of the full sphere.

Figure 2. A demonstration figure of the data-capturing system used in this paper, MARVEL. The
left-hand side shows the equipped data capturing platform. The integrated rig is mounted on top of
an electric van. The right-hand side shows a detailed view of the multi-spectral sensors. The camera
is installed on top of the rig to provide an unobstructed view. More detailed technical information on
the data collection platform and equipped sensors can be found in [22].

The image data captured are then input into a pre-trained Deeplabv3+ [23] semantic
segmentation model for inference. The model is trained on a dataset that was captured in a
typical suburb in Sheffield, UK. The data capture area is shown in Figure 3. The dataset
contains 5906 fine-labelled building envelope visual images. In this dataset, each image is
partitioned into six categories: wall, roof, window, door, chimney and background. The
labelling rules are specifically designed under consideration of the needs of urban stock
modelling [5]. The inferred masks are used to extract the building objects from the original
images to remove environmental noise. Four examples of the inferred masks with their
corresponding raw images and manually labelled masks are shown in Figure 4. Then
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these noise-free images are used to generate the building point cloud model using the
photogrammetry technique. Here we have employed an open-source software package
AliceVision Meshroom [16], for the reconstruction.

Figure 3. Map of the data capture area. This area is a typical suburb in northern England, which
is located in Handsworth, Sheffield. A total of 5906 images are collected in this area and manually
annotated to build the semantic segmentation dataset.

Figure 4. Demonstrations of qualitative semantic segmentation results on the Sheffield dataset.
Building types include detached, terraced and semi-detached houses. (a) Semi-detached house,
individual homes are recognised by the bush partition wall; (b) Detached house, a building without
obvious signs of individual homes; (c) Terraced house, structurally integrated homes, individuals
can be inferred by multiple doors; (d) Semi-detached house, individual homes are recognised by
isolated doors.

In the photogrammetry pipeline, the structure-from-motion (SfM) module first infers
the camera’s intrinsic parameters and image capture poses. Then the module can calculate
the point coordinates in space from the calibrated images. After that, the multiview-stereo
(MVS) module refines the coarse output from the SfM module to construct a dense recon-
struction. The relationship between the point coordinates in the space and the camera, also
known as the essential matrix in the multi-view geometry, is inferred by the photogramme-
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try algorithm. With the known essential matrices, the mask colour can be projected to the
dense reconstruction model from the MVS.

The output model from the pipeline is meshed and textured. Therefore, to acquire
the point cloud model, the texture colour is projected to corresponding vertices before the
building measurement operation.

2.2. The Automatic Building Measurement Pipeline

Modelling the roof structure is the key difference between the LoD-1 and the LoD-2
modelling. The state-of-the-art (SOTA) approaches are mainly based on using aerial data
collected by an Unmanned Aerial Vehicle (UAV) to reconstruct the roof [7,18]. The aerial
data could contain a full top-view of the roof. However, the cost of collecting the aerial data
is very high, and the UAV cannot provide a full front view of the building. In comparison, a
vehicle-mounted data-capturing system provides a more cost-effective and feasible solution
for collecting building data.

However, street-view data normally can only collect facade information instead of a
spherical view of buildings. Moreover, according to our observations, when we develop the
pre-processing pipeline, the generated labelled point cloud model has several drawbacks:
1. the roof structure is extremely difficult to reconstruct. The SOTA solutions to this problem
include integrating aerial data to compensate for the limited field-of-view of vehicles [7].
However, as mentioned, using the aerial data could greatly increase the cost financially
and temporally, which is not suitable for a scalable urban stock modelling target. 2. The
precision of the mask projection approach is still low. In this situation, a considerable
amount of building components in the labelled model have distorted shapes on which
it is difficult to apply the bottom-up approaches. Thus we have decided to develop our
algorithm based on the top-down approach.

Since the vehicle-mounted data capture can only acquire the building facade data
for which the roof structure is commonly only partially visible, assumptions are made for
the roof reconstruction: first, the building structure is assumed to be symmetrical around
the transversal axis. Therefore, once the facade geometry is achieved, the whole building
geometry is mirrored by the transversal axis; secondly, the roof structure is simplified to a
gabled shape. In [24], the authors analyse the difference between using the dynamic and
the quasi-steady building energy modelling approaches at the district level. The quasi-
steady energy modelling is a quick approach to calculating building energy demand, which
assumes the indoor and outdoor heat difference remains steady. The approach does not
require precise building envelope structures but the surface area of components as well as
their heat transmittance values (u-values). The comparative study [7] shows that applying
the quasi-steady energy modelling at a large scale is feasible. Thus, instead of trying to
reconstruct the precise roof structure, reaching the roof surface area is sufficient.

In [25], a roof template library is built that contains five different roofs. The library is
shown below in Figure 5. Although the library only contains the essential roof types, the
street-view data may still suffer from collecting adequate roof information for identifying
the three pitched roofs due to potential reconstruction errors and viewing angles because
the quasi-steady method is feasible for scalable building energy analysis. In this situation,
we argue that we can further simplify the pitched roof types in the template library. The
roof surface area difference percentage of the gabled roof over the hipped roof can be
expressed as:

Proo f = 100
Agabled − Ahipped

Agabled
(1)
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Figure 5. The common roof template library. This figure is adapted with permission from Ref. [25] by
adding extra annotations. Copyright 2017, Elsevier.

In Figure 5(2a), if we denote the building width as a, rooftop width as b, roof length as
l and the roof pitch as θ, the above equation becomes:

Proo f = 100
aw − [ (a+b)w

2 + w cos θ
√
( a−b

2 )2 + (w sin θ)2]

aw
< 100

[(a − b)(1 − cos θ]

2a
(2)

Equation (2) shows the percentile pitched roof surface area difference has a maximum
limit value when the roof upper width b is zero, i.e., the pyramidal roof. According to
our observation during the data collection, the roof pitch is around 35°. Thus the limit
value can be estimated to be around 9%. For precise building modelling, the roof structure
should be modelled as accurately as possible. However, as we are proposing a scalable
approach and at the initial investigation stage, it is determined that using the gabled roof
structure to represent the three different pitched roofs is acceptable due to the maximum
9% error. The shed roof is also considered as the gabled roof here since the street-view data
does not typically have information about the back of the building, which makes the shed
roof recognition impossible. Therefore, the five roof types in the template library can be
simplified into two types: flat and pitched.

To differentiate between a completely flat roof and a pitched roof point cloud, many
methods, such as parametric modelling [7] and linear regression [26], have been developed.
However, in this study, as we are using street-view data, these methods are not applicable.
Instead, the normal vector of a roof plane is used to differentiate between pitched and plane
roofs: if the normal vector of the main plane of a roof point cloud is non-vertical, the roof
can be classified as a pitched roof.

Figure 6 demonstrates the proposed automatic building dimension measurement
pipeline. As demonstrated, the pipeline starts from the automatically labelled dense
reconstruction point cloud model built by the pre-processing pipeline. Although the image
mask has certain colours for each category, we have found that the mask projection would
lead to gradient colour and various colour noises. Therefore, the K-means++ algorithm [27]
is applied first to cluster similar colours together. The K-means++ algorithm is an iterative
and unsupervised clustering approach for which the K value needs to be chosen first, which
represents the number of clusters the algorithm aims to partition. With the inferred centre
values from the trained K-means++ classifier, the point cloud model can be separated for
each category.

For the top-down approach, the building primitives need to be defined first. In this
work, the wall and the roof objects are considered to be planar and rectangular. Although
the data capture system applied can only collect the facade data in most cases, the gained
wall point clouds sometimes contain partial sidewalls. These sidewalls are incomplete and
thus redundant in general. The RANSAC algorithm [28] is applied to partitioning the wall
and the roof objects. The RANSAC aims to find planes in the target point cloud, which
has been used in building reconstruction [16]. A mechanism is developed to remove the
redundant planes: the angles between the rough facade direction vector and the direction
vectors inferred by the RANSAC for each detected plane are calculated, and only the
plane having the smallest intersection angle will be kept. Following the redundancy-
removal mechanism, the dimensions of the facade wall and roof are easily achieved by
orthogonally projecting the detected planes onto a two-dimensional space following a
bounding box strategy.
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Figure 6. The scope and simple demonstration of the developed building measurement pipeline. The
pipeline starts from the annotated point cloud model, which is achieved by texturing semantic masks
to the colourless model. As texturing will lose colour uniformity, the K-means++ is first adopted
to cluster points with similar colours. Then for larger objects, the RANSAC algorithm is applied
to detect planes and then uses bounding boxes to measure their dimensions. For smaller objects,
DBSCAN is used to separate individual objects. Prior to applying every algorithm, statistical noise
removal is applied to clean the data.

Windows and doors are distributed across the building envelope. Therefore, how to
extract each of these objects and also measure their dimensions becomes a critical task.
Here a reasonable assumption is made: all windows and doors have to be connected with
the wall. Thus, by projecting the window and the roof point clouds onto the wall plane, the
orthogonal shapes of these objects are obtained. A DBSCAN classifier [29] that can cluster
data points by density is employed to partition the window and door object groups into
individual objects. Then, in the same way as for the wall and roof, the dimensions can
be measured.

The pipeline will be validated by manually measuring the building point cloud model.
The manual measurement is conducted using the “measure function” in the 3D point cloud
processing software package CloudCompare [30]. The function is able to measure the
distance between two selected points. In the validation step, a building component is
measured by selecting the corner points of an edge.

3. Experiments and Validation Results
3.1. Experiments Setup and Dataset

In this investigation study, seven buildings’ street-view image data are selected from
the dataset collected by the developed data-capturing system. The collected visual images
are processed to build the labelled building point cloud models as introduced in Section 2.1.
The seven sample building models include one detached, three semi-detached and three
terraced houses. The three types of residential buildings are selected according to the
European residential building typology database [31].

As illustrated in Figure 7, except for the sample 0 model, all other models fail at re-
constructing the roof structure. In samples 1, 4 and 5, the windows are severely shadowed.
Besides these, the labelled models all have a lot of noise and jagged boundaries. These
problems will inevitably affect the performance of the developed building measurement
pipeline. Thus to test the pipeline capability in perfectly labelled models, a virtual de-
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tached house model—model 7 in Figure 7—is manually built through the Blender software
package [32]. The model is built by manually painting a colourless building point cloud.

Figure 7. The numbered building samples used in this study; the dense reconstruction is built by
the multi-view stereo (MVS) algorithm as aforementioned; the projected dense reconstruction is the
dense reconstruction model with semantic segmentation mask projected; all samples are numbered
and marked with their building types.

Seven metrics are selected to evaluate the pipeline performance, which are the wall
height, wall length, wall depth, roof pitch, area of the roof, area of the wall and the window-
to-wall ratio. These metrics are all significant in building energy modelling. Table 1 shows
the formulae used for each metric. The wall height, the wall length and the roof pitch
are directly measured by the pipeline. The building depth is calculated by assuming the
building is symmetrical by the building’s lateral axis, in which the θ is the roof pitch. The
area of the roof is the area of the facade roof multiplied by two, and the area of the wall is
the total envelope wall area. The window-to-wall ratio is the whole window area over the
wall area. The symmetrical hypothesis is also applied to these metrics.

Table 1. The pipeline evaluation metrics formulae sheet.

Metric Building Depth Total Roof Area Total Wall Area Window-to-Wall-
Ratio

Formula Dbuilding =
Lroo f × cos θ × 2

Aroo f =
Wroo f × Lroo f × 2

Awall = (Wwall +
Lwall)× Hwall × 2 WWR = Awindow×2

Awall

3.2. Results

Table 2 shows the results of the developed building measurement pipeline. The
difference values are calculated by the difference between the automatic measured result
and the manually measured result over the manually measured result. In models 2, 4, 5
and 6, the roof structure fails reconstruction, and thus, the depth, roof pitch and roof area
values cannot be achieved. In these models, instead of calculating the envelope wall area,
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the facade wall area is applied, and the WWR is the facade WWR. Sample 0 is the hipped
roof; therefore, calculating the roof area uses the hipped roof function.

Table 2. Quantitative evaluation of the developed automatic building measurement algorithm. Hwall
represents the total building height; θ represents the roof pitch angle; Aroo f and Awall are the total
roof and the wall area, respectively; and WWR is the window-to-wall ratio.

No.
Type Source Hwall (m) Wwall (m) Depth (m) θ (Degree) Aroof (m2) Awall (m2) WWR %

0 Semi-detached

Automatic 4.80 9.65 6.16 39.62 77.18 151.78 23.18%

Manual 4.30 9.65 6.12 36.77 67.69 126.21 20.87%

Difference% 11.58% 0% 0.65% 7.75% 14.02% 11.86% 11.10%

1 Semi-detached

Automatic 4.61 12.68 5.33 34.48 81.91 166.05 45.32%

Manual 4.20 13.44 5.80 33.98 85.59 157.25 22.85%

Difference% 9.76% −5.66% 0.95% 1.47% −4.29% 5.60% 98.37%

2 Semi-detached

Automatic 9.85 23.98 None - - 236.20 15.54%

Manual 9.03 24.48 - - - 221.10 19.28%

Difference% −9.06% 2.04% - - - −6.83% 19.42%

3 Detached

Automatic 6.49 9.59 2.42 53.03 38.55 155.89 15.44%

Manual 5.36 9.10 2.61 58.55 39.99 125.55 19.88%

Difference% 21.08% 5.34% 7.21% 9.43% 3.60% 24.16% -22.33%

4 Terraced

Automatic 8.21 28.98 None - - 237.93 36.75%

Manual 7.32 32.00 - - - 234.24 21.80%

Difference% 12.16% −9.44% - - - 1.57% 68.56%

5 Terraced

Automatic 10.81 94.77 - - - 1024.46 28.28%

Manual 10.08 96.76 - - - 975.34 17.38%

Difference% 7.24% −2.06% - - - 5.04% 62.72%

6 Terraced

Automatic 11.37 49.29 - - - 560.43 15.96%

Manual 8.72 57.20 - - - 498.78 20.16%

Difference% 30.39% 13.83% - - - 12.36% 20.82%

7 Virtual-detached

Automatic 4.87 9.34 6.34 34.99 72.29 152.72 17.76%

Manual 4.64 9.25 6.72 31.58 69.28 148.20 19.09%

Difference% 4.96% 0.97% −5.65% 10.80% 4.35% 3.05% 6.97%

Average 11.01% 0.63% 3.62% 7.36% 4.42% 7.10% 33.20%

Standard Deviation 10.80% 6.59% 2.87% 3.57% 6.49% 8.58% 37.03%

The first three semi-detached models achieve promising results in all metrics exclud-
ing the WWR. Considering the manual measurement errors, the developed pipeline can
accurately measure the building dimensions of the semi-detached buildings. Sample 0 has
a less accurate roof area prediction; one of the reasons is the manual roof area is calculated
by the hipped roof area function. As indicated in Equation (2), the area of a gabled roof is
larger than the area of a hipped roof when they have the same roof pitch and roof width.
It is noted that model 1 has a fairly inaccurate WWR measurement; this is because of the
severe window shadowing problem. Sample 2 also has the window shadowing problem
but is less severe.

The sample 3 model, a detached building, has a less accurate wall height measurement.
This is because this model has an attic that leads to a protrusion that is higher than the upper
roof boundary, but the pipeline has still measured it as the upper limit of the wall. The
problem also leads to larger errors in the wall area and the WWR measurements. Samples 4,
5 and 6 all fail in the roof reconstruction, which gives no results in the roof-related metrics.
Window shadowing leads to high errors in WWR in samples 4 and 5. It is noted that sample
6 is captured on a slope, and the current pipeline does not have the capability to cope with
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complex terrains. Thus this leads to an inaccurate measurement of building height. Sample
7 is virtually constructed by manual labelling. This sample shows the pipeline works well
in perfectly labelled models.

The average and the standard deviation of the difference values are also calculated in
this quantitative analysis. The results show the pipeline has achieved a high-accuracy level
performance across most of the metrics. Excluding WWR, the pipeline has achieved an
average error and standard deviation of all metrics of less than 10%. For building height,
it is slightly above 10%. Although the pipeline shows less accurate results in measuring
wall height, it still maintains robustness to some extent: the pipeline has achieved highly
accurate results in samples 1, 2, 5 and 7 and slightly less accurate results in samples 0
and 4. The two worst cases, samples 3 and 6, either have a unique facade or are captured
on a slope, as previously stated. The WWR measurement is the weakness of the pipeline
while it still achieved higher accuracies in higher-quality models. It is noted that once the
constructed facade model has an explicit structure, as in sample 7, all parameters can be
accurately measured, including WWR.

4. Discussion and Conclusions
4.1. Discussion and Future Work

In this study, we investigate the possibility of purely using visual image data captured
by a vehicle-mounted data-capturing system for automatically measuring the building
geometry for scalable energy analysis. An automatic building measurement pipeline is
developed using a set of machine learning techniques, including K-means++, DBSCAN
and RANSAC, and geometry operations, such as the orthogonal projection. Seven example
models across the main three types of residential buildings are constructed. The pipeline
has achieved promising results across the seven examples; the unsatisfactory results are
more related to low-quality data sources, such as unconstructed roofs and shadowed
windows. The pipeline works well with high-quality input data.

Besides the advanced compatibility and capability in characterising building geometry
of different types of buildings and in various scenarios, the developed pipeline also shows
competency in the data source and computational speed. Street-view style visual images
are the only data type required for this approach. Although an advanced data-capturing
system is adopted in this study, building visual images is widely available in many ways
owing to the uptake of portable visual sensors such as mobile phone cameras and GoPros.
In comparison with approaches using multi-source data types, the developed approach
can be more conveniently applied.

The potential computational cost is considered when designing the pipeline. Reducing
computational costs is crucial in scalable tasks. The pipeline is designed to be end-to-end. In
this case, human intervention is avoided as much as possible. When determining applicable
machine learning algorithms, heavy computational cost approaches, such as deep learning
techniques, are avoided. The computational speed of the pipeline really depends on the
size of the input building reconstruction model. For the eight building case studies, none
of the cases exceeds one minute of proceeding time.

The developed pipeline has shown outstanding performance in modelling accuracy,
data source requirement and computational speed. However, the pipeline still has some
drawbacks, including:

1. The building library is limited. At this stage, only the most common pitched roof
building is considered. Although Equation (2) shows that the roof area differences
among the different pitched roofs are not very distinct. In model 0, a 14 per cent error
is still observed, which is larger than the 9% estimation. Besides that, model 3 has
an attic, which leads to a distinct error in measuring the wall height. Therefore, the
developed method is needed to expand the building library to facilitate more robust
measurements across different types of buildings;

2. The complex terrain is another problem that affects the pipeline performance. If
the building is built on a slope, the shape of the building would become rhomboid
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instead of rectangular. This will lead to a higher building height measurement. An
improvement in how to cope with the complex terrains is also important;

3. In this study, all building models are assumed to have a transversal axis of symmetry
as the vehicle-mounted data-capturing system can only collect the facade data. The
assumption is reasonable in many cases but not adequate for many other cases.
Therefore, developing a strategy that can make more accurate assumptions about the
building structure is essential.

The future work of this study contains two facets: one is to refine the current pipeline
to improve its robustness; another is to fit the building measurement pipeline into the
proposed urban stock modelling framework [6]. For the first facet, the building library
needs to be expanded to contain more different types of facade walls and roofs. The current
algorithm uses the bounding box to measure the facade component dimensions. Therefore,
the algorithm will meet large errors when the building is built on inclined terrains or the
component has any protrusions. Therefore, instead of using the bounding box, the line
fitting and edge detection-based algorithm [33,34] need to be developed to capture the
object shape more precisely.

The developed approach fits the global target of the urban stock modelling frame-
work [6]. The precise building dimensions can be incorporated with hyperspectral data to
calculate building envelope material stocks. However, measuring the thermal gap [5] still
requires developing thermal gap detection and measurement modules and approaches to
fitting the pipeline with the thermal camera data.

Specifically, the developed approach can directly contribute toward scalable build-
ing energy modelling. The first step of building energy modelling is to collect building
geometry data. However, the geometry data are not always available and currently heavily
rely upon on-site surveys in the industry, which requires heavy labour and financial cost.
In industry, there currently emerge services using collected urban environmental remote
sensing data to measure building geometry, such as Spotr.ai [35]. However, how to auto-
matically characterise and quantify building geometry is still challenging. The developed
method realises a highly efficient and automatic building measurement.

4.2. Conclusions

This study develops a novel building dimension measurement algorithm and tests it
across typical residential building types. The developed approach is based on a series of
geometry algorithms and unsupervised machine learning techniques. The study shows the
developed approach has achieved satisfactory results in measuring the building dimen-
sions from the point cloud model. Future work of this study will focus on improving its
robustness. By incorporating the developed approach with the multi-spectral capture, such
as hyperspectral data, the extracted geometry information can directly contribute to the
automatic urban stock modelling.
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