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Abstract1

The residential building material stock constitutes a significant part of the built2

environment, providing crucial shelter and habitat services. The hypothesis concerning3

stock mass and composition has garnered considerable attention over the past decade.4

While previous research has mainly focused on the spatial analysis of building masses, it5

often neglects the component-level stock analysis or requires heavy labour cost for onsite6

survey. This paper presents a novel approach for efficient component-level residential7

building stock accounting in the UK, utilising drive-by street view images and building8

footprint data. We assessed four major construction materials: brick, stone, mortar,9
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and glass. Compared to traditional approaches that utilise surveyed material inten-10

sity data, the developed method employs automatically extracted physical dimensions11

of building components incorporating predicted material types to calculate material12

mass. This not only improves efficiency but also enhances accuracy in managing the13

heterogeneity of building structures. The results revealed an error rate of 5% and 22%14

for mortar and glass mass estimations, and 8% and 7% for brick and stone mass esti-15

mations, with known wall types. These findings represent significant advancements in16

building material stock characterisation and suggest that our approach has considerable17

potential for further research and practical applications. Especially, our method estab-18

lishes a basis for evaluating the potential of component-level material reuse, serving the19

objectives of a circular economy.20

21

Keywords: building material stocks, urban sustainability, circular economy, deep22

learning, computer vision, building facade, street view imagery23

Synopsis: This study introduces a computer vision-based method for precise component-24

level quantification of building materials, advancing circular economy efforts.25
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Introduction26

Residential buildings, integral to human habitation and contributing 62.2% of total building27

carbon emissions1, play a pivotal role in the built environment achieving the United Nations’28

Sustainable Development Goals2. These structures rely on construction materials which have29

formed a major portion of the anthropogenic mass of approximately 1.1 teratonnes, which30

has exceeded living biomass since 2020.3,4 Knowledge, e.g. type and quantity, of these mate-31

rials is crucial to facilitating a circular economy,5 aiding in building decarbonisation efforts32

by reducing demand for new materials through urban mining6 and facilitating related policy-33

making.7 Existing research largely studies the residential building stock from a geographical34

viewpoint, focusing on spatial analysis of material stock,8,9 but often overlooks individual35

building analysis. This gap warrants further investigation for a more geographically specific,36

nuanced understanding.37

38

The state-of-the-art techniques for acquiring building stock information can be aptly clas-39

sified into three distinct approaches:8,10,11 top-down, bottom-up, and remote sensing. The40

top-down approach involves viewing target objects as a complete system, with the material41

stock being equivalent to the mass balance of inflow and outflow within the system. The42

utilisation of socioeconomic statistics data is a prevalent practice in the implementation of43

this approach.12–15 As a result, it is often employed for material stock simulation at the44

level of a nation due to the data availability.8,16 Conversely, the bottom-up approach begins45

at the end-use object inventory stage, where the number of buildings is collated to derive46

the building material stock for a specific time period, with material intensity coefficients47

employed to calculate the material stock.17–22 The implemented bottom-up approaches have48

shown their capability of achieving considerably finer resolution than top-down approaches.49

Recently, the application of remote sensing data for material stock accounting has garnered50

considerable attention.23–25
51

52
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To accurately evaluate building material stock at the individual building-level resolution,53

component-level understanding of each structure is imperative.26,27 Consequently, top-down54

and satellite image-based remote sensing methods are insufficient for this task. Frequently55

utilised bottom-up techniques rely on publicly available data for material intensity, neces-56

sitating meticulous and labour-intensive preparation. In scenarios where no such data is57

accessible, collaboration with domain experts may prove a feasible alternative, but it is still58

highly labour intensive.28 An alternative is to develop an automated method for estimating59

building material stock to facilitate a more efficient procedure.60

61

Street view imagery serves as a potent data source, encapsulating substantial building-62

related information with promising utility to estimate building material stock. Over the past63

decade, navigation companies, notably Google29, have significantly enhanced the availability64

of such imagery. While previous research has leveraged Street view imagery across various65

domains30, including specific building attributes such as type31, age32, and window-to-wall66

ratio33, the application of this data type for comprehensive building stock evaluation remains67

relatively uncharted and poses distinct challenges.68

69

One salient challenge is a lack of data containing facade imagery and registered building70

information. Machine learning techniques, particularly deep learning, offer promising av-71

enues for building attribute estimation using street view imagery. However, these methods72

necessitate substantial, diverse, and accurately labelled training data, which presents signif-73

icant challenges in terms of data collection, annotation, and quality control.74

75

Another challenge lies in the limited availability of data capture locations; Street View76

services may not consistently provide frontal, complete views of each building, thus result-77

ing in partial or oblique images. Moreover, discerning intricate building details necessitates78

high-resolution imagery. For instance, distinguishing between non-rendered cavity walls and79
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solid brick walls requires the visualisation of brick patterns and, consequently, the discernible80

mortar joints, typically 1 cm thick in masonry structures. To attain the requisite clarity,81

imagery should ideally possess a minimum of 1 pixel per centimetre, translating to a 600-82

pixel image size for a standard two-storey, 6-meter tall building. Nevertheless, the Google83

Street View API29 currently limits downloadable image size to 640 pixels, which significantly84

constrains the effective use of this service for detailed analysis.85

86

This paper presents a novel method that integrates high-quality geo-referenced street view87

facade images with machine learning-based computer vision techniques to enable component-88

level building material stock characterisation. The study typically focuses on houses lower89

than three storeys which make up 94% of UK households.34 This proposed approach fa-90

cilitates the characterisation of individual buildings by capturing essential features such91

as component quantity, composition, built form, and age while requiring fewer assump-92

tions than conventional bottom-up models. To develop this approach, we have compiled93

a comprehensive dataset of 2,292 houses, enriched with high-resolution facade images and94

detailed attributes, and created specialised datasets for interior wall length estimation using95

facade features (300 UK houses) and construction material recognition (13,562 labelled image96

patches). Additionally, a new building age detection dataset (9,278 images) has been intro-97

duced, along with an innovative multi-task deep learning model for simultaneous building98

age and built form recognition.99

Materials and Methods100

Workflow Overview101

Figure 1 illustrates the workflow of the developed approach, which comprises of five individ-102

ual modules, from data collection to material stock calculation. The data collection process103

aims to establish a matched facade image & building footprint data. Subsequently, the fa-104
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cade images are utilised to predict houses’ age cohort, built form, i.e., detached, terraced,105

and semi-detached, and component locations, as illustrated in panels B and C. The predicted106

facade masks facilitate the estimation of the number of floors and openings i.e. windows and107

doors per floor. Moreover, the predicted masks are employed to extract patches from wall108

areas, which are subsequently used to predict the wall material type. The estimated building109

attributes are then fed into a regression model to predict the inner wall length, followed by110

the computation of the volume of inner walls. In the final step, all the achieved building111

attributes are used to calculate the mass of each designated material type.112

113

Overall, our approach uses visible facade features and publicly available building footprint114

data to derive an individual house’s material stock. The material stock of a given area can115

then be determined by summing the material stock of all individual buildings. The selected116

visible features include facade wall type, age, built form, and the spatial distribution of117

building openings, e.g. windows and doors. Wall type directly correlates to wall materials118

and in some cases may indicate insulation conditions while building age and built form link119

to pre-defined archetype databases such as the TABULA dataset36. These databases aid in120

the estimation of invisible materials such as timber from floor decks and roof structures and121

insulation. The spatial distribution of windows can be used to estimate the mass of glass. By122

incorporating dimension information obtained from the building footprint database, the mass123

of brick, stone, mortar and glass can then be directly obtained. This approach represents a124

significant contribution to the field of material stock analysis, as it provides a comprehensive125

and automated workflow for the estimation of building material stock from facade images.126

Drive-by Data Capture127

A built vehicle-mounted data capture platform37 was employed to collect street view facade128

images in this study. The platform contains an advanced multi-camera rig and an onboard129

inertial measurement unit (IMU) and a global navigation satellite system (GNSS) unit for130
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Figure 1: The developed material stock inventory characterisation pipeline. The data capture
platform figure in Panel A-a is adapted from Dai et al. (2022).35
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capturing raw image data and synchronised orientation/location data. The camera rig com-131

prises six separate 2/3-inch Sony IMX264 CMOS sensors with 2048 × 2448 effective pixels132

and wide-angle lenses with a frequency of 30 frames per second (FPS). The cameras are133

oriented with one on the top pointing upwards and the other five positioned horizontally134

along the sides forming a regular pentagon. The combined capture has a field-of-view of135

90% of the full sphere.136

137

During the data collection process, the capture platform traverses the designated area,138

which for demonstration in this paper is Merthyr Tydfil town, Wales, the UK. The platform139

travels at a speed of approximately 4.5 meters per second and captures data with a frequency140

of 10 FPS, around 12 images for every meter travelled. At a distance of 10 meters from the141

sensing vehicle, each pixel in the image is representative of an area of approximately 2.5142

cm2 on the target surface which exceeds the 1cm per pixel requisite stated previously. The143

onboard IMU/GNSS unit provides an orientation accuracy of 0.1◦ and a location accuracy of144

up to 0.1m, which leads to a 0.25m frame position accuracy at the 4.5m/s driving speed. The145

position data from the IMU/GNSS unit is recorded in the World Geodetic System (WGS84)146

format, consisting of longitude and latitude coordinates. For applications within the UK,147

these coordinates are reprojected to the Ordnance Survey National Grid reference system148

(OSGB 1936).149

150

The previously proposed algorithm, designed to extract perpendicular views of specified151

houses and register these with footprint data, is employed to obtain the ‘face-on’ views of the152

designated houses38,39. The method first reconstructs the panoramic image using frames from153

all five sensors and then slices the captured panorama based on vehicle orientations. Then by154

adopting the Ordnance Survey topographic identifier (TOID), the extracted perpendicular155

view slices are linked to the property footprint data40. The extraction of perpendicular-view156

facade images from captured panoramas inherently introduces radial distortion. Given that157
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these images are sliced from panoramic views, traditional chessboard-based image rectifica-158

tion methods41 prove inapplicable. To address this, an automatic radial distortion correction159

approach42 is implemented on the building-registered images prior to further processing.160

Datasets161

This section introduces all datasets built or used in this study. More details of these datasets162

such as annotation protocols, data distributions and comparison studies are available in the163

supporting information.164

The Housing Attributes Dataset This dataset comprises 2,292 houses, featuring facade165

images, footprint data, age cohorts, built forms, wall types, and opening information. It166

is based on the footprint-registered street view facade images obtained through the data167

collection procedure in Merthy Tydfil, Wales, the UK. The facade data is then aligned with168

the UK Energy Performance Certificate (EPC) records,43 employing property identifiers to169

obtain wall type, building age and built form data. Subsequently, visual wall materials,170

building dimensions, and opening sizes are manually obtained.171

The Age-Built form Dataset A dataset comprising 9,278 annotated images was con-172

structed using Google Street View data by following the subsequent steps: Initially, 21,207173

EPC records were collected. Duplicate and invalid records were filtered out, and the re-174

maining location data was used to query and download corresponding building images via175

the Google Street View API. Each downloaded image was manually inspected for address176

matching, appropriate camera orientation, and suitable resolution, retaining only images177

with perpendicular views and acceptable resolution. The finalised dataset was randomly178

divided into training (80%), validation (10%), and test sets (10%).179

180

The EPC categorises household age cohorts based on energy performance, but direct181

utilisation of these labels is challenging as narrow age cohorts may result in significant con-182
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fusion as shown in previous research.32 This study harmonises EPC age cohort classifications183

by integrating the TABULA Building Archetype project36 and the BRE Housing Survey44,184

resulting in four simplified groups: pre-1930s, 1930-1949, 1950-1975, and 1976-present. Addi-185

tionally, built-form labels are streamlined, merging end-terraced and mid-terrace categories186

into a single terrace label.187

The Facade Recognition Dataset The Sheffield Crookesmoor facade recognition dataset188

which is fine-labelled for building facade semantic segmentation is adopted in this study.45
189

This dataset consisted of 997 images annotated to five categories: window, door, wall, roof190

and chimney and specifically focusing on UK housing, and the data was obtained from the191

same data capture platform as in this study. The dataset has been randomly split into 80%,192

10%, and 10% training, validation, and test sets, respectively.193

The Material Patch Dataset A material patch dataset comprising 13,562 images was194

constructed for this study, labelled into four categories: solid brick, cavity brick, stone, and195

render. This dataset was created using data from the previous captures with the same data196

collection platform as this study.35,39,45 The dataset was randomly split using the same ratio197

as in previous datasets, i.e., 80% for training, 10% for validation, and 10% for testing.198

The Inner Wall Regression Dataset The dataset contains 300 houses with floorplans199

and annotations across the UK. The dataset is sourced from real estate websites Zoopla200

(https://www.zoopla.co.uk/) and Savills (https://www.savills.com/). Co-authors with201

architecture expertise are responsible for collecting raw data to ensure its high quality. The202

samples were meticulously labelled—visually and through AutoCAD—enabling precise iden-203

tification and measurement of features, including building types, interior wall length, perime-204

ters, width, depth and quantities and dimensions of windows and doors.205
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Building Age Cohort and Built Form Recognition206

In recent years, automatic recognition of building ages using facade images has garnered207

significant attention in the context of deep learning.32,39,46,47 Zeppelzauer et al. (2018)32
208

pioneered a patch-based approach, wherein building images are segmented into patches con-209

taining potential age-relevant features. These patches are input to a deep learning model,210

and aggregated predictions inform the building’s age estimate.211

212

However, this patch-slicing technique, initially designed for fine-grained classification213

tasks, is non-differentiable and introduces extra computational costs due to its two-stage214

nature of localisation and classification.48 Bilinear pooling, a fully differentiable technique,215

has emerged as a compelling alternative, achieving comparable performance with reduced216

computational overhead and enabling end-to-end training.49
217

218

The proposed model in this study, named FacMixNet, integrates a shared feature extrac-219

tion architecture for the dual prediction of building age and built form—two attributes that220

are conventionally classified separately.46,50 The novel multitask learning framework posits221

the potential interrelation of features used for both age and built form recognition, as de-222

picted in Figure 1 Panel B.223

224

FacMixNet adopts a dual-path architecture, using ResNet5051 and Xception52 as distinct225

backbone networks for feature extraction. For age prediction, a bilinear pooling module fuses226

features, but given its substantial memory demands, 1×1 convolution kernels are applied to227

reduce feature map dimensions. In contrast, for built-form prediction, FacMixNet employs228

a straightforward concatenation operation, premised on the assumption of more distinct229

feature categories. A channel-wise attention module is introduced post-concatenation to ac-230

centuate key features.231

232
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In summary, this study introduces FacMixNet, a multi-task deep learning model designed233

for the dual prediction of building age and built form from facade images. It strategically234

employs bilinear pooling and concatenation methods, reflecting the nuanced demands of235

these distinct yet related classification tasks, and provides an efficient, streamlined solution236

for building attribute recognition. Training details are available in the supplementary file.237

Facade Segmentation and Attributes Estimation238

Facade semantic segmentation seeks to identify building components, such as windows and239

doors, in images at the pixel level. While rectified and cropped facade images have been240

prevalent for 3D procedural modelling,53,54 recent work has shifted towards using street view241

images, which are more abundant and preserve building context.45,55
242

243

Door recognition, a critical aspect of segmentation, remains challenging due to its typi-244

cally lower intersection-over-union (IOU) metrics compared to overall dataset mean IOU.45,55,56
245

Doors are pivotal for discerning building attributes, such as the number of floors and indi-246

vidual units in terraced structures.247

248

In this study, a more efficient version of the previously developed FacMagNet model45
249

termed FacMagNet-s is proposed. FacMagNet-s leverages a Deeplabv3+57 model as a multi-250

class classifier for predicting all classes. Instead of employing an object detection model to251

refine predicted components, FacMagNet-s directly utilises the door predictions to calculate252

bounding boxes, followed by the previously designed magnifier module. The model structure253

is shown in Figure 1 Panel C-a and training details are available in the supplementary file.254

255

To isolate the spatial distribution of facade openings of individual houses, this work256

presents a pixel intensity-based algorithm. It applies a morphological open operation to a257

binary facade mask, followed by a vertical pixel intensity projection. This method identifies258
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the primary building structure by detecting the longest span between sharp declines in pixel259

intensity, effectively excluding neighbouring structures from the analysis. For terraced and260

semi-detached houses, the location of doors is utilised to extract separate residences.261

262

In estimating the distribution of windows on facades, we leverage the positions of doors,263

roofs, and wall trisection lines. The methodology is founded on specific architectural reg-264

ularities, the details of which are outlined as assumptions in the supplementary file. By265

incorporating these assumptions, we develop a rule-based algorithm with K-means cluster-266

ing to estimate the window arrangements in various house types, including terraced, semi-267

detached, and detached houses. Implementation particulars of this algorithm are detailed in268

the pseudo-code provided in the supplementary material. Once the vertical distribution of269

windows is ascertained, the achieved primary building location is then applied to obtain the270

window distribution of the designated house.271

Exterior Wall Type Recognition272

Wall construction types are crucial for estimating material requirements. In the UK, brick273

is the dominant construction material, with stone also being used. The British Energy Per-274

formance Certificates (EPCs) categorise walls into four types: cavity walls, solid brick walls,275

sedimentary rock walls, and igneous rock walls.58 Stone and brick walls have distinct visual276

features, and brick layouts differ between solid and cavity walls.277

278

A significant challenge is the rendering of outer walls, which can obscure the wall’s tex-279

ture—a key identifying feature—making visual data unreliable as shown in Figure 2. More-280

over, different materials can be used within the same building for decorative purposes. An281

Xception model is first trained on the built material recognition dataset. Training details of282

the Xception model are available in the supplementary file.283

284
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Noting the correlation between wall types and building ages—solid walls in Victorian285

buildings and cavity walls become prevalent from the 1920s59—this study then introduces286

an age-assisted wall identification approach. This integrates visual characteristics, experi-287

ential insights, and building age data to overcome the ambiguities introduced by rendering288

and intra-building material variations, thereby enhancing wall identification accuracy.289

290

During inference, depicted in Figure 1 Panel C-b, the predicted wall mask is used to291

extract wall area samples from raw images, which are then analysed by the trained Xception292

model. Subsequently, we employed a sliding box to randomly sample 50 patches from the293

wall area. These samples were then fed into the trained Xception model for inference.294

Acknowledging that diverse materials may be present on a single wall, we propose a material-295

ranking approach for filtering predictions. In this scheme, solid brick holds the highest296

priority; rendering wall has the lowest, and cavity brick and stone are of equal priority. For297

fully rendered buildings constructed post-1929, cavity brick is the default classification. For298

those built pre-1929, they are classified as solid brick. While buildings with stone features299

built after the 1930s are still classified as cavity brick.300

Interior Wall Regression301

To accurately estimate the material stock, the interior walls play a crucial role and acquiring302

such information is a tremendous challenge. The interior wall information can be retrieved303

from architectural layout plans or via onsite surveys. However, the former option is often304

hampered by severe data scarcity, while the latter is significantly labour-intensive. Mean-305

while, to calculate the material stock, a detailed floor layout is not necessary but the total306

length of the inner wall is adequate. With known inner wall length and height from footprint307

data, the weight of the inner walls can be calculated if we know its material type which has308

been inferred in the previous section.309

310
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Figure 2: Typical Masonry Wall Patterns and Wall Type Structures. The three wall types
are approximated to their archetypal forms: cavity walls consist of two layers of bricks, solid
walls exhibit a cross-laid pattern, commonly referred to as Flemish bond, and stone walls
are constructed using amorphous shaped stone chunks, which are adhered together using
mortar.
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We posit that there exists a correlation between the total inner wall length of a building311

and its external features, including windows, building length, building depth, and overall312

architectural form. Consequently, estimating the inner wall length presents a regression313

problem. In a similar vein, Yuan et al.60 investigated the use of building exterior features to314

estimate the weight of buildings based on waste management data from Hong Kong. Their315

study involved the construction of a dataset comprising 78 building samples, utilising mul-316

tiple data sources. Taking inspiration from their work, we built the inner wall regression317

dataset. We adhere to the same process as their work for our regression analysis.60
318

319

In choosing regression models, the Multi-Layer Perceptron (MLP) is adopted. The model320

structure is determined using a grid search strategy with the maximum number of hidden321

layers being 2 and the number of kernels ranging from 5 to 10. The activation function is322

determined to be Relu and the optimiser is chosen to be Adam. The number of epochs is323

determined to be 5000 and the early stopping is enabled. The model and evaluation are324

performed using the Python scikit-learn package.61
325

Material Stock Estimation326

As our approach is vision-based, we primarily focus on calculating materials which are visible327

in a building in this paper including brick which is the major English housing construction328

material62, stone, glass and mortar. By establishing connections between the derived build-329

ing attributes and supplementary data sources, such as historical construction standards, we330

can deduce the use of other types of construction materials, including insulation, wood and331

metals. It is important to note, however, that as this paper serves as a framework, we do332

not delve into the estimation of the whole material masses at this stage.333

334

In the UK, bricks typically adhere to a standard size of 215×102.5×65mm, while mortar335

maintains a standard thickness of 10 mm.63 Utilising these dimensions, a double-skin brick336
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wall, whether a cavity wall or solid brick wall, necessitates an average of 118 bricks per square337

meter. Consequently, for a single-skin brick wall, the brick requirement would be reduced to338

59 bricks per square meter. The brick density is assumed to be 2000 kg/m3 and the mortar339

density is assumed to be 2300 kg/m3.340

341

A notable aspect of this study is the consideration of structural elements in buildings.342

First, the exterior walls are all assumed to be load-bearing. Second, when a building’s long343

side exceeds 6 meters, the typical maximum span of a timber structural beam, a calcula-344

tion is introduced: the building’s long side length is divided by 6 meters, and the resulting345

quotient is multiplied by the building’s short side length. This product is then assumed to346

represent the length of load-bearing walls within the building. Then the rest of the interior347

walls are assumed to be single-skin brick walls.348

349

Despite the irregular patterns of stone walls, the approach assumes that stone used for350

construction can be treated similarly to regular bricks for weight calculations. In other ways,351

the calculation of the stone house is assumed to be the same as the brick houses. The density352

of stone is assumed to be 2500 kg/m3.353

354

To estimate glass weight, the resolution of the image is inferred by assuming each floor355

is 3m tall and obtaining the number of pixels of the wall height in the image. The glass356

area is then calculated from window dimensions, with an assumption of a 70-millimetre-357

wide window frame and a 4-millimetre glass thickness. Besides, buildings built after 1970358

are assumed to be double glazing and otherwise to be single glazing. Using this area, the359

density of the glass and the assumed glazing type, the weight of the glass is computed.360
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Results and Discussion361

Material Mass Estimation Performance362

Figure 3 demonstrates the prediction performances of the computer vision-driven material363

stock estimation approach. EPC records and manually measured attributes provide refer-364

ence values, while the proposed method furnishes predicted values. Each subplot includes a365

line with a gradient of one, denoting the expectation function, and the mass distributions366

for reference and prediction are displayed on the top and right margins, respectively.367

368

The data reveals exemplary performance in mortar mass prediction, with a 5% error rate369

among the 2,292 samples, evidenced by the close alignment of the fitting function to the370

expectation function.371

372

The prediction of glass mass has achieved the second-best result with an overall error373

rate of 22%. However, The variance of glass prediction is higher than the mortar.374

375

Brick and stone mass predictions showcase three distinct clusters. One cluster aligns well376

with the expectation function, pointing to accurate wall type predictions. The other two377

clusters, residing along the x and y axes, represent misclassified wall types.378

Individual Models’ Performances379

Figure 4 shows the trained classification models’ deployment performances using confusion380

matrices. All confusion matrices have been normalised by dividing their number of true381

labels. All evaluation measures used in this study, including the confusion matrix and382

various evaluation metrics, are detailed in the supporting information.383
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Figure 3: The mass prediction performance results for each material type. The reference val-
ues indicate the masses calculated by using EPC data and manually measured variables. The
prediction values are produced by using the proposed computer vision-based mass estima-
tion approach. For each material type, their linear regression fitting with a 95% confidence
interval is calculated and another line with gradient being one is also presented. The total
and average masses of each material and residuals of reference and prediction values are
recorded in the top-right table of each figure.
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Figure 4: The results of the deployment of the age cohort (as seen in Subfigure A), built
form (Subfigure B), and wall type predictions are presented. Due to the inability to directly
predict the wall types of rendering walls, the prediction performance is assessed separately.
Subfigure C pertains to buildings with visible wall materials, while Subfigure D relates to
those with rendering walls.
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Age cohort prediction The model achieved a 90% accuracy on the deployment dataset.384

As illustrated in Figure 4-A, the model exhibited superior performance for historic (97.4%)385

and 50s60s (85.1%) buildings but was less effective in identifying modern (64.2%) and 30s40s386

(32.9%) structures. Although the overall accuracy on the deployment data surpassed the387

validation results (90% versus 86%), the model underperformed in classifying modern (64.2%388

compared to 76.5%) and 30s40s (32.9% versus 49.1%) buildings. Notably, the deployment389

data indicated confusion between modern and historic buildings, a trend absent in the val-390

idation dataset. The 30s40s category consistently displayed significant misclassifications391

towards neighbouring age groups in both datasets.392

Built form prediction On the deployment dataset, the built form prediction attained393

an overall accuracy of 85% similar to the validation set (88%). As depicted in Figure 4-B,394

the model demonstrated reduced efficacy in classifying semi-detached (69.8%) and detached395

(61.2%) buildings. This trend was also observed in the validation dataset, though the per-396

formance was superior—77.4% for semi-detached and 70.6% for detached buildings.397

Wall type prediction Figure 4-C and D present the performances of wall type predictions.398

Distinct evaluations are conducted for visible walls and rendered walls, given the latter’s399

predictions hinge on assumptions and age cohort determinations. For visible walls, the model400

excelled with an overall accuracy of 90%, achieving 96.7% for cavity walls, 86.7% for solid401

brick walls, and 79.3% for stone walls. Conversely, rendered wall predictions in Figure 4-402

D indicate that solid walls are often misclassified as cavity brick or stone. Notably, stone403

predictions frequently coincide with solid bricks due to the assignment of rendered walls in404

historic buildings to solid brick types, leading to the potential overlooking of rendered stone405

walls.406

Segmentation and Inner Wall Regression Models Figure 5 demonstrates the quan-407

titative performance of the proposed FacMagNet-s model. The wall and window predictions408
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Table 1: The inner wall regression results. Ten different random states have been tested on
the built dataset. Four evaluation metrics are selected to evaluate the model performance.

Seed Avg. 1 6 22 31 38 48 72 93 98

R2 0.81 0.82 0.81 0.80 0.85 0.83 0.81 0.81 0.80 0.79

MAE 2.67 2.48 2.68 2.97 2.69 2.49 2.51 2.89 2.73 2.75

MSE 12.00 10.09 13.10 14.07 12.19 10.91 10.55 13.58 12.86 12.64

RMSE 3.46 3.18 3.62 3.75 3.49 3.30 3.25 3.68 3.59 3.56

have achieved 91.4% and 91.1% in pixel accuracy, respectively which lays a robust founda-409

tion for window distribution and glass mass estimation.410

411

Figure 5: The confusion matrix of the proposed facade segmentation model.

Meanwhile, Table 1 presents an evaluation of the Multi-Layer Perceptron (MLP) algo-412

rithm’s performance for the task of inner wall regression. To ascertain model robustness,413

ten distinct random state seeds are assessed. Overall, the MLP model attains an R2 score of414

0.81, signifying a pronounced correlation between the chosen independent variables and the415

dependent variable, namely, the inner wall length. With a mean inner wall length computed416

at 30.75m, the RMSE suggests an average prediction error margin of 11%.417

418
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Facade Information-based Building Material Stock Estimation419

Factors influencing mass prediction accuracy fall into two categories: dimensional and clas-420

sification. Dimensional inaccuracies encompass errors in predicting building footprint and421

window size, while classification errors arise from the performance of trained models. No-422

tably, errors in predicting wall types have a significant bearing on estimating brick and stone423

masses, as illustrated in Figure 3.424

425

Figure 4-C and D reveal that visible walls exhibit markedly superior accuracy for solid426

brick and stone than rendered walls. This underscores that the presence of rendered walls427

primarily constrains precise estimations. When samples with incorrect wall type predic-428

tions are excluded, brick and stone mass prediction errors stand at 8% and 7% respec-429

tively—substantially lower than the overarching error rates of 55% and 67%. Such findings,430

along with the mortar mass prediction results, suggest that dimensional errors have minimal431

impact. This supports the efficacy of employing the Douglas-Peuker algorithm and bounding432

boxes for estimating floorplan dimensions.433

434

Glass mass predictions hinge on the accuracy of window dimension predictions, which435

in turn are greatly influenced by facade segmentation quality. The number of wall pixels436

dictates image resolution, and the precision of window recognition further affects these esti-437

mations. Additionally, inconsistencies in age cohort predictions sway glass mass predictions438

given their role in specifying glazing types.439

440

In summation, the data affirms the viability of utilising facade images and computer441

vision methods to gauge building material stock, particularly for visible wall types. The442

methodology, however, demonstrates limitations in predicting the mass of rendered wall443

buildings, especially for stone.444
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The Reference Level Uncertainties and Approach Limitations445

In this research, the reference level is derived from EPC records coupled with manually mea-446

sured dimensions. However, given that EPC records are based on onsite evaluations, they447

inherently possess inaccuracies64. This makes the difference between the calculated reference448

level and the ground truth uncertain. A study by Hardy et al. (2019)64 assessed the precision449

of EPC records and found that 27% of them contained discrepancies, with approximately450

11% of buildings exhibiting wall types inconsistent with their records.451

452

Our team manually labelled the housing attribute dataset based on their visual wall453

types. Findings reveal that the accuracy stands at 90.8% for cavity brick, 86.7% for solid454

brick, and 91.3% for stone walls. Consequently, the exact error rate for rendered walls is455

indeterminate. Moreover, from our observations, a subset of rendered wall buildings appear456

more akin to brick than stone walls, intensifying the challenge of accurately ascertaining the457

true wall types for rendered walls.458

459

The results for the inner wall length regression demonstrate inherent uncertainties. The460

benchmark for inner wall length derives from EPC records complemented by manual mea-461

surements. Nonetheless, the model imparts an error margin of ±11%, thus making the462

benchmark somewhat indeterminate. Additionally, while the predicted inner walls are pre-463

sumed to be constructed from structural materials, i.e. brick or stone, the prevalence of464

plasterboard as partition walls in contemporary homes cannot be overlooked. Though ef-465

forts were made to exclude evident plasterboard partition walls during dataset annotation,466

the exact nature of the inner walls remains ambiguous without a comprehensive onsite survey.467

468

Additionally, our assumptions consider only brick and stone as construction materials.469

Yet, some houses may be constructed using concrete blocks. Given that EPC records lack470

detailed descriptions concerning concrete blocks, and visually determining a building’s con-471
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struction as concrete-based is inherently challenging, the incorporation of concrete remains472

ambiguous.473

The Path Towards an Efficient Component-Level Building Material474

Stock Future475

A fundamental limitation of contemporary methods for estimating building material stock476

is resolution. Typical strategies, such as employing optical remote sensing or nighttime light477

images, fail to achieve component-level material estimation. Conversely, traditional bottom-478

up accounting necessitates labour-intensive onsite surveys.479

480

Drive-by facade images offer a cost-effective and efficient avenue for obtaining building481

attributes. Our research underscores that, with the aid of computer vision techniques, build-482

ing attributes crucial for stock estimation can be reliably discerned, except in the case of483

buildings with rendering walls. While this approach mandates the use of building footprint484

data, the increasing ubiquity of built environment research renders this data readily accessi-485

ble.65,66 As such, the method developed and presented in this paper signifies a step towards486

a streamlined component-level mass estimation.487

488

Moving forward, our primary objectives are to address the current method’s limitations:489

particularly concrete estimation, rendered wall construction material prediction, and the490

exclusion of plasterboard. Given the constraints of computer vision techniques, only visi-491

ble attributes can be captured. Nevertheless, buildings, as rigorously regulated constructs,492

possess attributes that might be deduced using age cohort data. For instance, the popu-493

larity of concrete buildings and plasterboard surged post-World War II, attributed to their494

cost-effectiveness and ease of installation. Encoding building regulations into our approach495

promises a more holistic and precise trajectory for component-level building mass estimation.496

497
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Overall, building stock, a critical component of the built environment, serves as a repos-498

itory of readily available and recoverable materials, effectively acting as an "above-ground499

mine". The foundation of a circular economy lies in the perpetuation of a materials loop,500

which strives to diminish and ultimately negate the need for extracting virgin resources.501

Precise knowledge of building materials at the component level allows for an accurate as-502

sessment of secondary resources and the forecasting of material demand. This granularity in503

accounting for building stock is indispensable, not only for tapping into the vast potential504

of material reuse but also for propelling the full scope of product recovery necessary for a505

thriving circular economy.506
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Data and Code Availability507

Due to privacy constraints, image data from the vehicle-mounted capture platform will508

remain inaccessible to the public. However, the Google Street View data employed for model509

training is retrievable through the Street View API. Upon this paper’s publication, the query510

locations—encompassing both location details and labels from their EPC records—the inner511

wall regression dataset, the building attributes dataset, and developed software packages will512

be made available on the designated GitHub repository: https://github.com/MerlinDai/513

MARVEL_StockQuantification.514
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Lederer, J.; Schiller, G.; Fishman, T.; others High-resolution maps of material stocks592

in buildings and infrastructures in Austria and Germany. Environmental science &593

technology 2021, 55, 3368–3379.594

(24) Bao, Y.; Huang, Z.; Wang, H.; Yin, G.; Zhou, X.; Gao, Y. High-resolution quantification595

of building stock using multi-source remote sensing imagery and deep learning. Journal596

of Industrial Ecology 2023, 27, 350–361.597

(25) Liu, Z.; Saito, R.; Guo, J.; Hirai, C.; Haga, C.; Matsui, T.; Shirakawa, H.; Tanikawa, H.598

Does Deep Learning Enhance the Estimation for Spatially Explicit Built Environment599

Stocks through Nighttime Light Data Set? Evidence from Japanese Metropolitans.600

Environmental Science & Technology 2023, 57, 3971–3979.601

31



(26) Arbabi, H.; Lanau, M.; Li, X.; Meyers, G.; Dai, M.; Mayfield, M.; Densley Tingley, D. A602

scalable data collection, characterization, and accounting framework for urban material603

stocks. Journal of Industrial Ecology 2022, 26, 58–71.604

(27) Francart, N.; Gummidi, S.; Hoxha, E.; Birgisdottir, H. A Danish model of building605

macro-components to promote circularity. Journal of Physics: Conference Series. 2023;606

p 192001.607

(28) Shen, L.; Yang, Q.; Yan, H. Spatial Characterization Analysis of Residential Material608

Stock and its Driving Factors: A Case Study of Xi’an. Buildings 2023, 13, 581.609

(29) Anguelov, D.; Dulong, C.; Filip, D.; Frueh, C.; Lafon, S.; Lyon, R.; Ogale, A.; Vin-610

cent, L.; Weaver, J. Google Street View: Capturing the World at Street Level. Computer611

2010, 43, 32–38.612

(30) Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landscape613

and Urban Planning 2021, 215, 104217.614

(31) Kang, J.; Körner, M.; Wang, Y.; Taubenböck, H.; Zhu, X. X. Building instance classifi-615

cation using street view images. ISPRS journal of photogrammetry and remote sensing616

2018, 145, 44–59.617

(32) Zeppelzauer, M.; Despotovic, M.; Sakeena, M.; Koch, D.; Döller, M. Automatic predic-618

tion of building age from photographs. Proceedings of the 2018 ACM on International619

Conference on Multimedia Retrieval. 2018; pp 126–134.620

(33) Szcześniak, J. T.; Ang, Y. Q.; Letellier-Duchesne, S.; Reinhart, C. F. A method for621

using street view imagery to auto-extract window-to-wall ratios and its relevance for622

urban-level daylighting and energy simulations. Building and Environment 2022, 207,623

108108.624

32



(34) Ministry of Housing, Communities & Local Government English Housing Survey,625

Households Report, 2017-18. 2018; https://www.gov.uk/government/statistics/626

english-housing-survey-2017-to-2018-households (accessed 2023-06-06).627

(35) Dai, M.; Ward, W. O.; Arbabi, H.; Densley Tingley, D.; Mayfield, M. Scalable Res-628

idential Building Geometry Characterisation Using Vehicle-Mounted Camera System.629

Energies 2022, 15, 6090.630

(36) Loga, T.; Stein, B.; Diefenbach, N. TABULA building typologies in 20 European coun-631

tries—Making energy-related features of residential building stocks comparable. Energy632

and Buildings 2016, 132, 4–12.633

(37) Meyers, G.; Zhu, C.; Mayfield, M.; Tingley, D. D.; Willmott, J.; Coca, D. Design-634

ing a Vehicle Mounted High Resolution Multi-Spectral 3D Scanner: Concept Design.635

Proceedings of the 2nd Workshop on Data Acquisition to Analysis. 2019; pp 16–21.636

(38) Ward, W.; Dai, M.; Arbabi, H.; Sun, Y.; Tingley, D.; Mayfield, M. Measuring the637

Cityscape: A Pipeline from Street-Level Capture to Urban Quantification. IOP Con-638

ference Series: Earth and Environmental Science 2022, 1078, 012036.639

(39) Ward, W.; Li, X.; Sun, Y.; Dai, M.; Arbabi, H.; Tingley, D. D.; Mayfield, M. Estimat-640

ing energy consumption of residential buildings at scale with drive-by image capture.641

Building and Environment 2023, 234, 110188.642

(40) Ordnance Survey MasterMap topography layer. 2023; https://www.ordnancesurvey.643

co.uk/business-government/products/mastermap-topography (accessed 2023-05-644

15).645

(41) A flexible new technique for camera calibration. IEEE Transactions on pattern analysis646

and machine intelligence 2000, 22, 1330–1334.647

33



(42) Cucchiara, R.; Grana, C.; Prati, A.; Vezzani, R. A Hough transform-based method for648

radial lens distortion correction. 12th International Conference on Image Analysis and649

Processing, 2003. Proceedings. 2003; pp 182–187.650

(43) BPIE Energy Performance Certificates across the EU. 2015.651

(44) Piddington, J.; Nicol, S.; Garrett, H.; Custard, M. The Housing Stock of the United652

Kingdom. BRE Trust: Watford, UK 2020, https://files.bregroup.com/bretrust/653

The-Housing-Stock-of-the-United-Kingdom_Report_BRE-Trust.pdf (accessed654

2023-06-06).655

(45) Dai, M.; Ward, W. O.; Meyers, G.; Tingley, D. D.; Mayfield, M. Residential building656

facade segmentation in the urban environment. Building and Environment 2021, 199,657

107921.658

(46) Sun, M.; Zhang, F.; Duarte, F.; Ratti, C. Understanding architecture age and style659

through deep learning. Cities 2022, 128, 103787.660

(47) Benz, A.; Voelker, C.; Daubert, S.; Rodehorst, V. Towards an automated image-based661

estimation of building age as input for Building Energy Modeling (BEM). Energy and662

Buildings 2023, 292, 113166.663

(48) Wei, X.-S.; Song, Y.-Z.; Mac Aodha, O.; Wu, J.; Peng, Y.; Tang, J.; Yang, J.; Be-664

longie, S. Fine-grained image analysis with deep learning: A survey. IEEE transactions665

on pattern analysis and machine intelligence 2021, 44, 8927–8948.666

(49) Lin, T.-Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN models for fine-grained visual667

recognition. Proceedings of the IEEE international conference on computer vision. 2015;668

pp 1449–1457.669

(50) Meng, C.; Song, Y.; Ji, J.; Jia, Z.; Zhou, Z.; Gao, P.; Liu, S. Automatic classification670

34



of rural building characteristics using deep learning methods on oblique photography.671

Building Simulation. 2022; pp 1–14.672

(51) He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition.673

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.674

2016; pp 770–778.675

(52) Chollet, F. Xception: Deep learning with depthwise separable convolutions. Proceedings676

of the IEEE conference on computer vision and pattern recognition. 2017; pp 1251–1258.677

(53) Martinovic, A.; Knopp, J.; Riemenschneider, H.; Van Gool, L. 3d all the way: Seman-678

tic segmentation of urban scenes from start to end in 3d. Proceedings of the IEEE679

Conference on Computer Vision and Pattern Recognition. 2015; pp 4456–4465.680

(54) Gadde, R.; Jampani, V.; Marlet, R.; Gehler, P. V. Efficient 2D and 3D Facade Seg-681

mentation Using Auto-Context. IEEE Transactions on Pattern Analysis and Machine682

Intelligence 2017, 40, 1273–1280.683

(55) Kong, G.; Fan, H. Enhanced Facade Parsing for Street-Level Images Using Convolu-684

tional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing 2020,685

59, 10519–10531.686

(56) Zhang, G.; Pan, Y.; Zhang, L. Deep learning for detecting building façade elements from687

images considering prior knowledge. Automation in Construction 2022, 133, 104016.688

(57) Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with689

Atrous Separable Convolution for Semantic Image Segmentation. Proceedings of the690

European Conference on Computer Vision (ECCV). 2018; pp 833–851.691

(58) Watson, P. An introduction to UK energy performance certificates (EPCs). Journal of692

Building Appraisal 2010, 5, 241–250.693

35



(59) Fewins, C. The pros and cons of different construction systems. Home Building &694

Renovating 2004, 1–11.695

(60) Yuan, L.; Lu, W.; Xue, F.; Li, M. Building feature-based machine learning regression696

to quantify urban material stocks: A Hong Kong study. Journal of Industrial Ecology697

2023, 27, 336–349.698

(61) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blon-699

del, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; others Scikit-learn: Machine learning700

in Python. the Journal of Machine Learning research 2011, 12, 2825–2830.701

(62) Summers, C.; Hulme, J. BRE Client Report for EPISCOPE Pilot Project: Eng-702

land, Intelligent Energy Europe Programme for the European Union; Client703

Report 297809, 2016; https://episcope.eu/fileadmin/episcope/public/docs/704

pilot_actions/GB_EPISCOPE_NationalCaseStudy_BRE.pdf (accessed 2023-06-06).705

(63) Institution, B. S. BS EN 771-1 Specification for Masonry Units. Part 1: Clay Masonry706

Units ; 2020.707

(64) Hardy, A.; Glew, D. An analysis of errors in the Energy Performance certificate708

database. Energy policy 2019, 129, 1168–1178.709

(65) Sirko, W.; Kashubin, S.; Ritter, M.; Annkah, A.; Bouchareb, Y. S. E.; Dauphin, Y.;710

Keysers, D.; Neumann, M.; Cisse, M.; Quinn, J. Continental-scale building detection711

from high resolution satellite imagery. 2021, arXiv preprint arXiv:2107.12283, https:712

//arxiv.org/abs/2107.12283 (accessed 2023-06-06).713

(66) Milojevic-Dupont, N.; Wagner, F.; Nachtigall, F.; Hu, J.; Brüser, G. B.; Zumwald, M.;714

Biljecki, F.; Heeren, N.; Kaack, L. H.; Pichler, P.-P.; others EUBUCCO v0. 1: Euro-715

pean building stock characteristics in a common and open database for 200+ million716

individual buildings. Scientific Data 2023, 10, 147.717

36



TOC Graphic718

719

37


