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Abstract4

The important role of buildings in tackling climate change has been globally recognised. To avoid5

unnecessary costs and time wasted, it is important to understand the conditions and energy usage for6

existing housing stock to identify the most important features affecting housing energy consumption7

and to guide the relevant retrofit measures. Existing data-driven and statistical studies that use8

machine learning for energy consumption usually develop models using all available variables relevant9

to building, which can be redundant. This paper investigated how the spatial, morphological and10

thermal characteristics of residential houses contribute to energy consumption predictions by utilising11

a state-of-the-art automated machine learning (autoML) tool for properties’ construction age bands12

and energy consumption prediction. A case study has been conducted with around 143,000 residential13

properties in Sheffield. The autoML model successfully estimated the energy consumption with a14

mean absolute percentage error of 18.1% and a R2 score of 0.828. Variables used were ranked by15

their permutation feature importance. Housing sizes and conditions of the external walls are found16

to be the most important features when estimating energy consumption of residential buildings in17

Sheffield. Relatively larger houses developed in neighbourhood with higher density may benefited the18

most from home upgrading projects for more significant energy consumption reduction.19

Keywords Residential Energy Consumption Prediction; Automated Machine Learning (autoML);20

Energy performance certificates (EPC); Permutation Feature Importance.21

1 Introduction22

1.1 Background23

Residential buildings have become one of the largest consumers of energy around the world (BEIS, 2022b).24

The recent years have witnessed the growing pressure residents feel in paying energy bills, caused in part25

by the worldwide COVID-19 pandemic and the rapid increase in energy prices (BEIS, 2022a). In the26

UK, the residential sector is the only sector that rose in energy consumption since 2019, while other27
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sectors: transport, industry and services, all decreased (BEIS, 2020). This increasing trend hints at the28

difficulties the UK government is currently facing to achieve its net-zero emissions goals by 2050 to tackle29

the climate crises.30

Incentives have been introduced to mitigate the energy and environmental crisis. The UK government31

has proposed to raise the minimum energy standards for domestic buildings, especially privately rented32

houses, from energy rating E to C by 2030 (BEIS, 2019). According to the latest English Housing Survey,33

53.8% of existing housing stocks are rated below energy rating C and therefore require retrofitting under34

the new proposals (DLUHC, 2021). In order to meet the new standard, UK government is investing35

nearly £4 billion during 2022 to 2026 to support home upgrading and retrofitting (BEIS, 2022a).36

Retrofitting homes is relatively expensive and time-consuming compared to demolition and then con-37

structing new buildings. BEIS studied the potential costs for home retrofitting projects and summarised38

that the most common retrofitting measure used is upgrading the fabric insulation, including the walls,39

lofts and floors, which can cost up to £15,000 per home (BEIS, 2017). Existing studies have implemented40

machine learning techniques to develop data-driven models to estimate the buildings’ energy performance41

and identify the elements that are most in need for retrofitting. However, most of these studies chose42

the input variables and algorithms based on researchers’ knowledge or the ones previous studies have43

used. This paper investigated how important each building feature is related to its energy prediction,44

by utilising automated machine learning (AutoML) to estimate the year of construction and energy45

consumption of residential buildings. Publicly available data was used to extract multi-modality features46

representing buildings’ spatial, morphological and thermal characteristics. The marginal effects of features47

with relatively high permutation feature importance in the designed models were further examined using48

a series of partial dependence plots. The results provide a hint on what are the most essential features for49

energy consumption estimation when data is limited, and what are the essential housing characteristics50

should be considered for selecting target homes for retrofitting.51

1.2 Related Work52

When estimating residential buildings’ energy performance, there are three approaches commonly found in53

the existing literature, either a data-driven approach, a physics-based approach or a hybrid method that54

combines the previous two approaches. Both the physics-based and hybrid approaches rely on detailed55

information on buildings’ thermal characteristics, such as the thermal transmittance of the building56

material (Foucquier et al., 2013). They are usually applied in relatively small-scale studies focusing on a57

single building. When access to meter readings and buildings’ internal space is limited, a data-driven58

approach is usually applied to develop statistical or machine learning models, based on historical energy59

consumption data and building morphology. It has been found that, in general (Rosser et al., 2019;60
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Kontokosta and Tull, 2017):61

1. Buildings constructed in similar periods tend to have similar building characteristics; and62

2. Buildings with similar characteristics tend to have similar energy needs.63

Each rule has suggested one main feature affecting the buildings’ energy performance. The first rule64

indicates the year of construction is important in energy estimation. One of the potential reasons is that,65

housing legislation changes regularly to comply with the housing and environmental concerns at that time66

and also what might be needed in the future, for instance, the Town and Country Planning Act issued in67

1947 (Gallent and Tewdwr-Jones, 2007) prioritised developing single apartment blocks. The construction68

sector then develops homes accordingly, hence the second rule (Gallent and Tewdwr-Jones, 2007).69

Despite the importance of building age in inferring building energy needs, no easily accessible complete70

database is available (Rosser et al., 2019). Existing studies have attempted to infer building age from71

its physical features (Sousa et al., 2017; Kontokosta and Tull, 2017). Rosser et al. (2019) proposed a72

methodology to predict the year of construction using map data and historical satellite images. Their73

machine learning model used the random forest algorithm achieved 77% prediction accuracy (Rosser74

et al., 2019). However, their model was trained based on a relatively small number of properties (1,096)75

in Nottingham to predict 5 aggregated age bands covering a rather wide time span. The testing samples76

they used were derived from a single neighbourhood, which tends to have similar building features and77

construction age.78

The second rule, the relationship between building characteristics and energy needs, provides insight into79

how housing features can be used to estimate energy using the data-driven approach. Existing literature80

has experimented with a wide range of different data inputs providing such information, including81

data either in 2D or 3D, e.g. LiDAR point cloud (Dino et al., 2020), text-based (Wang et al., 2018)82

or image-based (Despotovic et al., 2019; Ali et al., 2019). One widely used database is the Energy83

Performance Certificates (EPC). EPC is an official document of buildings’ energy performance required84

for every property in the UK. It ranks the building energy performance from G, the least efficient, to A,85

the most efficient calculated using the Standard Assessment Procedure (SAP) (DECC and BRE, 2014).86

Ali et al. (2019) developed a workflow that uses existing EPC data to predict buildings’ energy ratings87

when such information is not available. Their best-performing machine learning model has achieved 88%88

accuracy in predicting building EPC ratings for properties in Ireland. However, there are issues with89

EPCs that the above studies did not take into consideration. For instance, Crawley et al. (2019) have90

summarised that there are around 1.6 million properties found to be associated with multiple valid EPCs91

in the system.92

Existing energy prediction studies, including the aforementioned, usually develop the machine learning93
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model without performing an exhaustive search and fine-tuning. One of the potential reasons is that94

doing an exhaustive search and fine-tuning with dataset at city-scale may require heavy computing power.95

This is one of the main reasons why the trend of implementing autoML tools is growing. The autoML96

approach can be considered as a complete ”black box”. It offers a combined algorithm selection and97

hyper-parameter optimisation tool to reduce the costs of machine learning model development (Feurer98

et al., 2015). It takes care of raw data input from the beginning to the final step, offers a tool that99

reduces development costs, and at the same time provides optimal estimation accuracy (He et al., 2021;100

Hutter et al., 2019).101

1.3 Main Contributions of the Work102

This paper investigated the ranking of housing features on building age and energy consumption prediction,103

based on a systematic approach utilising open-sourced data and autoML, this work104

• Identified the most important features for building age and energy consumption estimation;105

• Investigated the marginal effects of most important features on building age and energy consumption.106

The paper is structured as follows. Section 2 provides a detailed description of what data has been107

utilised and what pre-process has taken place in this work. Due to the nature of open-source data, the108

limitations of the used data are listed, followed by how these limitations may hinder the overall model109

performance. Section 3 presents the methodology this study followed, detailing how the data is aggregated110

and sub-sampled, how autoML system implemented and robustness tested using a comparative study. A111

case study was conducted based on residential properties in Sheffield with results and discussion offered112

in Section 4.113

2 Data114

This paper mainly used text-based data from two sources: Ordnance Survey (OS) and EPC. The map115

data is used to describe the spatial and morphological characteristics of the houses, while the EPC116

provides information relating to housings’ material and insulation conditions. The following sections will117

explain the procedures of the data collection and pre-processing conducted before model development.118

2.1 Spatial and Morphological Data119

The spatial and morphological data this paper used is the OS MasterMap Building Height Attribute120

products (Ordnance Survey, 2021). Table 1 has listed all the features extracted and used to describe the121

buildings’ morphology.122

Variables 1, 3 and 4 are values provided in the OS MasterMap, while the rest are calculated using ArcGIS.123
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Table 1: List of features based on OS MasterMap, with brief descriptions of what they represent of and
how they are calculated

No. Variables Description
1 Total floor area Area of the building footprint (a)
2 Perimeter Total length of building polygon outline (p)
3 Relh2 Relative height from ground to the base of the roof
4 Relhmax Relative height from ground to the highest part of the building

5 NPI Normalised Perimeter Index (NPI) calculated by 2
√
aπ
p

6 Vxcount Number of vertices in building polygon
7 Builtrate Ratio between all property footprint and postcode area

Perimeters and Vxcount are calculated using the field calculator in Arcmap. Variables 5 and 6 are metrics124

adapted to describe the complexity of the building shape. Normalised Perimeter Index (NPI) is a shape125

metric measuring the roundness. A NPI value further departed from 1 suggests the building has a more126

complex shape (A. Wirth, 2004). Three properties are highlighted in Figure 1 as example. Property127

A is a primary school in Sheffield, while B and C are terraced houses that can be commonly found in128

the UK. Each property has been marked with its area, total perimeter length and the calculated NPI.129

By comparing these values, it can be seen that, buildings with more irregular shapes have smaller NPI130

values. On the other hand, B and C are the same type of houses, so similar values are found for NPI and131

building perimeter because they are more similar in building shapes.132

A
B

C

Residential buildings in SheffieldResidential buildings in Sheffield © Crown copyright and database rights 2022 Ordnance Survey

Property  A

Area: 706.55 m²
Perimeter: 136.02 m
VxCount: 40
NPI: 0.693

Property  B

Area: 44.26 m²
Perimeter: 30 m
VxCount: 7
NPI: 0.786

Property  C

Area: 42.49 m²
Perimeter: 29.94 m
VxCount: 7
NPI: 0.772

Figure 1: Illustration of example map data

2.2 Energy Performance Certificates133

The UK government provides an online database for users to access and download EPC records as134

spreadsheets. In this study, the EPC is used to provide variables relating to buildings’ energy performance.135

As discussed in Section 1.2, studies show that multiple EPC records can be found associated with the136
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same property (Crawley et al., 2019). This study examined the downloaded EPC, if the property address137

or reference number occurred multiple times, it means that the property is associated with multiple138

EPC records. These redundant EPCs are filtered based on when the record was created. The single139

latest-issued EPC is used as the data input.140

Overall, the EPC contains 92 categories offering building-related information from three perspectives:141

spatial and reference information to identify where the property is (e.g. Unique Property Reference142

Number (UPRN) and address); the current property characteristics and energy performance; and potential143

characteristics and energy performance if recommended retrofit implemented. Therefore, a data selection144

process is essential to filter unnecessary information and avoid high costs in time and computational145

power. The selected variables and their brief descriptions are listed in Table 2.146

Table 2: List of data extracted from the EPC, with brief description of what the represent of and example
classes in categorical data

No. Variables Description
8 Property type Type of property (e.g. house)
9 Built form Type of built-form (e.g. detached)
10 Transaction type Status in the housing market (e.g. marketed sale)
11 Number habitable rooms Number of rooms in the property
12 Number heated rooms Number of rooms that are heated in the property
13 Roof description Type of roof and its insulation conditions (e.g. pitched)
14 Walls description Type of walls and its insulation conditions (e.g. filled cavity)
15 Floor description Type of floor and insulation conditions (e.g. solid, insulated)
16 Lighting description Percentage of low energy lighting used
17 Mainheat description Type of main heating options used (e.g. boiler)
18 Main fuel Type of main fuel used for central heating (e.g. mains gas)
19 Ageband Construction age grouped in 12 bands (e.g. before 1900)
20 Energy consumption Energy consumption (kWh per year)

Variables 8 to 12 are features describing the general characteristics of the buildings, while variables 13 to147

18 provide more detailed descriptions to the conditions of specific building elements. The original energy148

consumption recorded in the EPCs are measured in kWh/m2 per year. Total floor area for each house149

is taken into consideration here to produce the variable 20, which is used as the ground truth data for150

training the energy prediction model.151

Inconsistencies and abnormal entries are found for the categorical variables. This may be caused by the152

fact that the records were created by multiple inspectors and may have also followed different versions of153

guidance on creating EPCs. All variables are preprocessed following two steps. The first step is to replace154

blank or abnormal entries. For example, if the entry is marked as ‘INVALID!‘ or ‘NO DATA‘, these155

entries are combined as ‘unknown‘. This process also ensures the records only contains English records.156

The second step is reorganising the categorical data (variables 13-19). Similar descriptions in the categories157

are found and merged. For instance, ‘some double glazed‘ and ‘partial double glazed‘ used to describe the158

window insulation conditions are combined into one category.159
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Once the data from OS and EPC are prepared separately, they are matched using the Unique Property160

Reference Number (UPRN). The UPRN is a reference system commonly found in the UK geospatial data161

such as OS map data. It was recently introduced to EPC in November 2021 (Roberts and DLUHC, 2021),162

which enables this paper to match the map data with its relative EPC. The combined dataset is then163

used for training the machine learning models for age and energy prediction, which will be explained in164

the methodology section.165

3 Methodology166

This section presents the development of supervised machine learning models for age and energy prediction.167

The overall workflow is illustrated in Figure 2. The first model trains an autoML to predict construction168

age bands for properties with no age specified in the EPC. This step ensured the data for energy169

consumption prediction is complete. The second model then predicts energy consumption based on170

properties’ and thermal characteristics.171

Energy Performance 
Certificate (EPC)

Ordnance Survey (OS)
MasterMap

UPRN

EPC Age Bands

Current Property Conditions

Permutation Feature Importance

AutoML

Permutation Feature Importance

Map data

Aggregation and Subsampling Output 1: Predicted Building Age Bands

Output 2: Predicted Building Energy Consumption

AutoML

Figure 2: The designed workflow this study follows, including data inputs (OS and EPC), information
extraction and pre-processing, model training by autoML and outputs.

3.1 Age Bands Aggregation and Subsampling172

The ground truth data used in training the age prediction model is variable 19, the age band recorded in173

the EPC. The EPC has 12 age bands in total: before 1900; 1900-1929; 1930-1949; 1950-1966; 1967-1975;174

1976-1982; 1983-1990; 1991-1995; 1996-2002; 2003-2006; 2007-2011; 2012 on-wards. These age bands are175

classified following the changes in regulation for building construction, which mainly are amendments176

for the conservation of fuels and power (DECC and BRE, 2014). The way the age bands are classified177

suggests it may not be the best representation of how buildings’ physical shapes and designs change over178

time. Relatively lower prediction accuracy is expected when conducting the age detection. However, this179

is the only open-sourced data that can be found offering adequate spatial coverage and level of detail for180

property age. There are other age data, such as the products from Verisk (Verisk Analytics Inc, 2022),181

which interprets building age from imagery, but classified the age in a very generic way (i.e. historic,182
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postwar and modern).183

Although the uneven distribution is a representation of the number of properties constructed in the real184

world, it can poorly affect the performance of machine learning models. Machine learning models usually185

try to maximise the prediction accuracy by assigning more weights to classes with more occurrences186

(Appice et al., 2015). To reduce the bias caused by the imbalanced distribution, age bands with fewer187

records are aggregated into one class, as explained in section 2.2, and then the simple random sampling188

method is used to randomly select 4,000 properties from each age band for prediction.189

3.2 Automated Machine Learning190

3.2.1 Auto-Sklearn191

After initially processing the raw input data, the workflow then proceed to the next stage to train and192

perform prediction using autoML. Auto-sklearn was selected as the automated model development tool for193

this study. Auto-sklearn is developed based on the Scikit-learn, a popular python library offering a wide194

range of machine learning algorithms (Feurer et al., 2015). As illustrated in Figure 3, Auto-sklearn can195

be considered as a pipeline with three main steps. The first step is meta-learning, where the input data is196

compared with pre-stored benchmark data (Feurer et al., 2015). The algorithms that performed well on197

the benchmark data that is similar to the user inputs are selected as target algorithms. The second stage198

then trains, fine-tunes and evaluates all target algorithms. The Bayesian optimisation simultaneously199

calculates the correlations between the hyper-parameter settings and the prediction accuracy. This200

correlation is the main criteria the Auto-sklearn used for algorithm selection. The pipeline also tests201

whether building an ensemble of multiple algorithms will achieve better prediction performance.202

Two models were separately trained using Auto-sklearn, a classification model for age bands prediction,203

and a regression model for energy consumption prediction. To minimise the effects of multi-collinearity,204

the input data were divided into two sets based on the rules stated in Section 1.2. Building age bands205

were predicted primarily based on the spatial and morphological features of buildings, and the energy206

consumption was predicted with more thermal-related features. When training, all the input data was207

randomly split, 80% is used for training and 20% for testing. The trained model performance on the new208

dataset was examined using the testing data.209

The performance of all the trained algorithms were evaluated. Model accuracy score and F1-Macro score210

were used for the age classification model. The accuracy score calculates the proportion of predicted label211

that exactly matched with the ’true’ labels (Buitinck et al., 2013). F1-Macro score is calculated using the212

following equations (Geron, 2017), where TP stands for true positives, FP is false positives, and FN is213

false negatives:214
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precision =
TP

TP + FP

recall =
TP

TP + FN

F1−Macro =
2× precision× recall

precision+ recall

The most optimal algorithm for age band prediction was then used to predict the construction year215

band and complete the information for houses without age bands recorded. Regression models for energy216

consumption prediction was evaluated by R2 and the mean absolute percentage error.217

AutoML

{Xtrain, Ytrain,
Xtest, b, L}

Ypredicted

Meta-learning

Comparing input 
data meta-features 
with all pre-stored 
data and searching 
for k well-
performing 
algorithms 

Bayesian Optimiser

Ensemble construction

ML Pipeline

Instead of selecting a 
single best-performing 
algorithm, constrcut an 
ensemble with all near-
best algorithms given 
different weights

Data Preparation Model Generation

Feature Preprocessor

Figure 3: An overview of the Auto-sklearn system. The input data follows the pipeline to construct the
most optimal model and then perform prediction. The pipeline involves meta-learning, data preparation,
feature preprocessor, model generation, Bayesian optimisation and ensemble construction.

3.2.2 Comparison study between Auto-sklearn and traditional ML pipeline218

This work also conducted a comparison study as a robustness test to examine whether Auto-sklearn219

outperforms a traditional machine learning pipeline, one algorithm selection and fine-tuning are conducted220

in separate steps. Similar to how Auto-sklearn behaves, the input data was preprocessed. Numeric data,221

variables 1-7, 11, 12, 16 and 19 (in the energy prediction model), was normalised to be unit invariant.222

Categorical data, variables 8-9, 13-15, 17 and 18, was processed using the one-hot encoding. This encoding223

process converts each class in the categorical data into a separate features in a binary format. If the224

sample falls into this feature, then 1 is marked, otherwise 0.225

A list of algorithms that have either been used by existing studies or are potentially suitable for the input226

data was selected. The four most common machine learning model structures, K-Nearest Neighbours,227

Random Forest, Decision Tree, and Gradient Boosting, were tested for both age and energy consumption228

predictions (Geron, 2017; Murphy, 2012). F1-Macro score and R2 score were also used for evaluating the229

models and comparing with the models trained using auto-Sklearn.230

As shown in Table 3, the traditional pipeline provided a result different from what auto-Sklearn concluded.231

Among the four algorithms, random forest estimators achieved the best performance for both prediction232

tasks. It is also the algorithm that most of the existing studies have applied for residential building233

energy estimation (Rosser et al., 2019; Kontokosta and Tull, 2017). The resulted predictions are also less234
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accurate than the Auto-sklearn computes.235

Table 3: Comparison among model training scores for all predictions to check the robustness of using
autoML. Different algorithm and better training accuracy were concluded by applying autoML.

Age bands classification Energy consumption regression
Algorithm Model Score F1-Macro R2 MAPE

AutoML Gradient Boosting 0.543 0.540 0.828 18.1%

Manual

K-neighbours 0.412 0.583 0.758 19.1%
Decision Tree 0.445 0.901 0.554 22.5%
Random Forest 0.468 0.991 0.776 18.7%
Gradient Boosting 0.446 0.473 0.767 20.9%

3.3 Permutation Feature Importance236

Permutation feature importance (PFI) was used to rank how each variable can affect the overall model237

performance. The PFI is calculated by randomly shuffling or permutating each input data. The resulting238

prediction accuracy before and after the shuffling are calculated and compared. Larger difference in239

accuracy score suggests the variable is relatively more important to the model (Molnar, 2020). Comparing240

with the gini feature importance used in existing study (Rosser et al., 2019), the PFI performs better in241

dealing with categorical variables, especially if they are processed with one-hot encoder. For example,242

after one-hot encoding procedure, the feature class ‘Property type‘, will be expended into four separate243

variables: property type: bungalow, property type: flat, property type: house, and property type:244

maisonette. The gini feature importance can only provides individual measures on the four sub-classes;245

while the PFI is able to store and permute before they are processed with the one-hot encoding system.246

More useful hints on what input data in their original class are necessary for the predictions can be247

offered.248

4 Case Study: Residential Houses in Sheffield249

4.1 Overview250

This paper has conducted a case study focusing on all residential buildings in Sheffield, UK. Following the251

steps explained in the data and methodology sections, EPC records for all residential buildings in Sheffield252

available as of December 2021 were downloaded. All these records were first filtered so every property253

only contains the latest record. Among all EPCs downloaded, there were 23.5% properties found to be254

associated with multiple records which add up to 34.3% EPC records. The resulting dataset comprised255

142,973 homes and their associated EPC records for the following study. According to the EPC, the256

residential properties in Sheffield have an average energy consumption of around 274.50 kWh/m2 per year257

or 22219.42 kWh per year, if the footprint for each property recorded in the EPC is used for calculation.258

As illustrated in Figure 4, before aggregation, the original records from EPCs show that most of the259
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residential buildings in Sheffield were developed between 1900 and 1966, and few were built after 2012.260

There are also 10,392 (7.3%) properties’ construction age remains unknown. Without pre-processing, this261

uneven distribution will lead to a biased model. Based on the number of properties each age band contains,262

the age band ‘1991-1995‘ and ‘1996-2002‘ were combined into the new class ‘1991-2002‘; ‘2002-2006‘,263

‘2007-2011‘ and ‘2012 on-wards‘ were aggregated into the new class ‘post-2002‘. The aggregation process264

ensured all age bands have enough data to follow the sampling process for model training.265

5.80%

17.94%

19.64%

16.78%

11.40%

5.54%

4.55%

5.58%

5.43%

7.33%

1991-2002

post 2002

Distribution of age bands recorded in the EPCs

After aggregationBefore aggregation

5.80%

17.94%

19.64%

16.78%

11.40%

5.54%

4.55%

2.43%

3.15%

3.46%

1.89%

0.07%

7.33%

before 1900

1900-1929

1930-1949

1950-1966

1967-1975

1976-1982

1983-1990

1991-1995

1996-2002

2003-2006

2007-2011

2012 onwards

unknown

Figure 4: Distribution of construction age recorded in the EPCs before (left) and after aggregation (right)

Table 4 summarises the basic statistics of the numeric data and their subsets used in predictions, including266

their average, standard deviation (std) and coefficient of variance (cv). The summary of categorical data267

used in this paper is included in the Appendix. The last four variables in Table 4 are only used for energy268

prediction so no subsamples were generated. The coefficient of variance is calculated as the ratio between269

the std and the mean. Among all the numerical data used in this study, it is not surprising to find that,270

except for built rate, all the variables have cv less than 1. As more than 70% of residential properties271

in Sheffield are houses, they tend to have relatively similar physical features, the same as the example272

map illustrated in Figure 1. The only variable that has a cv larger than 1 is the built rate, this is also273

common because properties in the more rural areas of the city are less densely built than neighbourhoods274

around the city centre. By comparison, the subsets generated using the sampling method can to some275

extent be considered representative of all the data collected, as there is no significant difference between276

the statistics of original and subsampled data.277
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Table 4: Statistics of numeric data used for model prediction, before and after applying the simple random
sampling approach

Variables
All Samples Subsamples

Mean Std cv Mean Std cv
Total floor area 81.45 38.16 0.47 81.02 40.11 0.49
Perimeter 41.82 26.01 0.62 45.84 32.83 0.72
Relh2 6.33 3.26 0.52 6.78 3.95 0.58
Relhmax 8.17 3.40 0.42 8.73 4.16 0.48
NPI 0.78 0.04 0.05 0.77 0.05 0.06
Vxcount 12.57 7.29 0.58 9.96 5.00 0.50
Builtrate 0.21 0.28 1.33 0.23 0.36 1.57
Number habitable rooms 4.06 1.77 0.44
Number heated rooms 3.96 1.76 0.44
Lighting description 0.53 0.34 0.64
Energy consumption (kWh) 22219.42 14149.90 0.64

4.2 Results and Discussion278

4.2.1 Age Detection279

The age detection model was trained on the processed dataset. The auto-Sklearn detected 37 algorithms280

that might be optimal for predicting building age bands. The most optimal model used a gradient281

boosting algorithm, which trains the model by sequentially adding input variables to the ensemble of282

decision trees and refit the model based on the errors made by the previous added inputs (Murphy, 2012).283

For testing data, the most optimal model Auto-Sklearn trained achieved a accuracy score of 0.543 and an284

F1-Macro score of 0.540. The model performance was further evaluated by comparing the predicted age285

bands for the test data with their true class in EPC records, Figure 5. Although the majority of the286

age band were correctly predicted, especially for the aggregated age bands, as expected, a few remain287

mispredicted. Apart from the reason explained in the data section, that the age bands are classified based288

on the changes in energy regulations, other potential reason for this misprediction might be because289

developers tend to design houses that fit into the general building styles nearby.290

The PFI plotted in Figure 6a ranked how important each input feature is to the age prediction model.291

The x-axis is plotted in its log form, to offer clearer visualisation for variables with less feature importance292

The importance rank suggested that, the built-up rate is the most important features when predicting the293

age bands of residential buildings in Sheffield, floor area and property types are also relatively importance.294

Excluding the variable builtrate caused a 23.9% decrease in model accuracy score, and a 25.6% decrease295

in F1-Macro score.296

The NPI and the number of vertices are found relatively less important. As the example properties297

illustrated in Figure 1, when predicting the age of residential buildings, buildings tend to have little298

difference in shapes and thereby less sparsity in values can be found. Excluding NPI and the number299

of vertices only caused decrease in accuracy score and F1-Macro by 0.37% and 0.56% respectively. In300
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Sankey diagram based on testing data
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Figure 5: Sankey diagram showing the link between the true (left) and predicted age bands (right) using
the random forest classification.
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Figure 6: PFI for variables used in the two machine learning models, x axis in log form. (a) is for age
detection and (b) is for energy consumption prediction

overall, when data availability is limited, the age band of the housing can be estimated by understanding301

the housing size, the building type, and how densely the postcode area it located at is developed.302

To further investigate how the variable ’Builtrate’ contributes to the prediction of each age band, partial303

dependency plots (PDP) are adopted. The partial dependence calculates the average marginal effects304

a target feature has towards the prediction outcome, by considering all the other features as constant305

(Molnar, 2020). As illustrated in the series of charts in Figure 7, the relationships between the builtrate306

and each age band are complex. In general, in Sheffield, if the houses located in more densely developed307

postcode area, the houses have higher possibility of being built before 1929 or after 2002. Houses built in308

areas with less builtrate is more likely being built between 1967 and 1982.309
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Figure 7: PDP for variable Builtrate and age bands. Each plot shows how ’Builtrate’ (the x axis)
contributes to the odds of houses developed in each age band (the y axis).
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4.2.2 Energy Consumption Prediction310

The energy consumption prediction was then conducted after age bands classified for each housing. The311

age prediction results from the first model were used to train the model. Auto-sklearn determined the312

best-performing algorithm used data preprocessors based on feature type, feature agglomeration as feature313

processors and gradient boosting as the regressor. The trained model achieved a R2 score of 0.828, and a314

mean absolute percentage error (MAPE) of 18.1%. The results suggest that overall, around 82.8% of the315

test data can be explained by the trained algorithm; and the prediction results based on the test data316

have an average difference of 18.1% compared with the ground truth.317

The PFI plotted in Figure 6b ranked how the input data may affect the model performance on estimating318

energy consumption. The total floor area is the dominating feature in this estimation. Excluding this319

feature from model training led to a 15.3% decrease in R2 score and a 26.0% increase in MAPE value.320

The partial dependence plot 8a suggests that, a linear relationship can be found between house sizes321

and energy consumption. In general, larger houses in Sheffield usually have higher energy consumption.322

Apart from variables related to the housing size, the the type and condition of the walls is the most323

important feature when estimating residential housing energy. How different types and conditions of324

housing material may affect the housing energy needs are intensively researched (Tingley et al., 2015;325

Government, 2022). The external walls are also where most retrofitting projects target at.326

On the other hand, window and lightning conditions are less important in estimating housing energy327

consumption, excluding these features only resulted in 1.20% decrease in R2 score and 2.76% incease328

in MAPE. Houses’ age bands ranked the eighth among all features, which indicates that it has relative329

less impacts for energy consumption prediction. The PDP plots in Figure 8b suggests that in overall,330

a declining linear relationship can be found between housing age and its energy consumption. Houses331

newly built tends to have less energy consumed.332
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Figure 8: PDP for the marginal effects of total floor area and age bands (the x-axis) towards residential
energy consumption in kWh (the y-axis) in Sheffield.
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5 Conclusion333

This paper examines how spatial, morphological and thermal characteristics of residential houses con-334

tributes to housing age and energy consumption prediction, by applying an automated approach in335

machine learning model development. The trained model achieved a R2 score of 0.828 in predicting336

residential building energy prediction. The PFI plots offer hints the essential information required for337

each model when data availability is limited to perform prediction. That means, when SAP calculation338

is not available, this approach can be followed to obtain a relatively accurate understanding of the339

building energy demands using variables with higher rank of feature importance: house size, material340

and conditions of the external walls, and also the main heat options used. By further examining how341

individual variable correlates with the amount of building energy consumption, the series of PDP plots342

suggests that, energy savings may be largely made by targeting at larger houses. For houses in similar343

sizes, improving the insulation conditions of the building walls will lead to the most significant changes in344

residential energy efficiency.345

However, EPC is not reliable or accurate. Future work can be done to investigate potential alternative346

data sources to describe the building’s thermal and physical conditions. For instance, photos for the347

target properties and scanned LiDAR 3D models. Multi-modal prediction can also be conducted to348

overcome the limitations caused by using only one type of data. This paper only utilised text-based data,349

but for future work, deep multi-modal learning may be developed to jointly take images and text data for350

prediction.351
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Appendix: Statistics of categorical data used in case study444

Table 5: Property type

Property type Proportion
Bungalow 4.54%
Flat 22.09%
House 70.84%
Maisonette 2.54%

Table 6: Built form

Built form Proportion
Detached 17.40%
Enclosed End-Terrace 1.17%
Enclosed Mid-Terrace 0.83%
End-Terrace 14.22%
Mid-Terrace 29.21%
Semi-Detached 34.53%
unknown 2.66%

445

Table 7: Floor description

Floor description Proportion
(another dwelling below) 16.20%
Conservatory 0.00%
insulated 0.00%
no insulation 0.00%
Solid, insulated 3.37%
Solid, no insulation 18.67%
Suspended, insulated 2.92%
Suspended, uninsulated 47.67%
To external air, insulated 0.11%
To external air, uninsulated 0.11%
To unheated space, insulated 1.15%
To unheated space, uninsulated 4.51%
Average thermal transmittance 0-1.33 5.23%
unknown 0.04%

Table 8: Windows description

Windows description Proportion
Double glazing 90.39%
High performance glazing 5.47%
Multiple glazing 0.13%
Multiple glazing 0.00%
Secondary glazing 0.41%
Single glazing 3.38%
Triple glazing 0.14%
unknown 0.08%

Table 9: Walls description

Walls description Proportion
Cavity wall, insulated 52.82%
Cavity wall, no insulation 12.92%
Cob, as built 0.01%
Granite or whin, insulated 0.01%
Granite or whin, no insulation 0.13%
Sandstone or limestone, insulated 0.45%
Sandstone or limestone, no insulation 4.78%
Solid brick, insulated 0.97%
Solid brick, no insulation 16.15%
System built, insulated 1.73%
System built, no insulation 1.04%
Timber frame, insulated 1.41%
Timber frame, no insulation 0.08%
Average thermal transmittance 0-2.1 7.46%
unknown 0.04%

Table 10: Roof description

Roof description Proportion
(another dwelling above) 14.63%
Flat, insulated 2.06%
Flat, no insulation 1.38%
Pitched, insulated 58.37%
Pitched, no insulation 14.92%
Roof room(s), insulated 1.79%
Roof room(s), no insulation 1.40%
Thatched 0.00%
Thatched, insulated 0.01%
Average thermal transmittance 0-2.4 5.37%
unknown 0.06%
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Table 11: Main fuel

Main fuel Proportion
biogas 0.01%
biomass 0.02%
coal 0.10%
dual fuel 0.04%
electricity 7.19%
from heat network 0.00%
gas 91.43%
LPG 0.10%
no heating 0.29%
oil 0.12%
unknown 0.54%
waste combustion 0.15%
wood 0.01%

Table 12: Main heat

Main heat description Proportion
Air source heat pump 0.14%
Boiler 86.96%
Community scheme 4.00%
Electric heat pumps 0.00%
Electric heaters 3.02%
Ground source heat pump 0.01%
Micro-cogeneration 0.00%
Room heaters 5.22%
unknown 0.11%
Warm air 0.53%
Water source heat pump 0.00%
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