
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

Deep multimodal learning for residential building
energy prediction
To cite this article: Y Sheng et al 2022 IOP Conf. Ser.: Earth Environ. Sci. 1078 012038

 

View the article online for updates and enhancements.

You may also like
Harvesting big data from residential
building energy performance certificates:
retrofitting and climate change mitigation
insights at a regional scale
João Pedro Gouveia and Pedro Palma

-

Superconductivity enhancement in
FeSe/SrTiO3: a review from the
perspective of electron–phonon coupling
Xiaofeng Xu, Shuyuan Zhang, Xuetao Zhu
et al.

-

Atomic layer etching of Sn by surface
modification with H and Cl radicals
Doo San Kim, Yun Jong Jang, Ye Eun Kim
et al.

-

This content was downloaded from IP address 143.167.254.174 on 16/11/2022 at 09:44

https://doi.org/10.1088/1755-1315/1078/1/012038
/article/10.1088/1748-9326/ab3781
/article/10.1088/1748-9326/ab3781
/article/10.1088/1748-9326/ab3781
/article/10.1088/1748-9326/ab3781
/article/10.1088/1361-648X/ab85f0
/article/10.1088/1361-648X/ab85f0
/article/10.1088/1361-648X/ab85f0
/article/10.1088/1361-648X/ab85f0
/article/10.1088/1361-6528/ac9981
/article/10.1088/1361-6528/ac9981
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuELFVCGu6lrjU9HT11hmet-WuirQfmMM40h1bCpa6jmcjTzzAcsPKXl5R2bJjIrzgKxQ1N_o_LxkMcmMGkIYB6clyKQ3yvvh2_K9gBAs3VeYkd1YD5C-lHQvxwU3sZBRt1TfCdUhnOZR6PxBLzS1WjpFekZcQSSmt7HRTHas42VZoVsvzemZdIal1VgGYpJHKvhRdBTG9btSRVpLyLEsge_nj4xSl0R38d7PeJGRGONpucB_gWB7nOsYeT1TM28nPlZPzzeE7XFrYuzNWicxeXoMqwRXFEHeMk4cI_4g5Txw&sai=AMfl-YQoLtX9hNEAOt26T7m8vjbQMGnfr6rsY32298wClWR-ucDrH08vI4rIpZvpTS8ZRqVA1etNNDtblYnq32NlgQ&sig=Cg0ArKJSzEz2KCLRxAgo&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/243/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3D243Abstract


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

SBE-BERLIN-2022
IOP Conf. Series: Earth and Environmental Science 1078 (2022) 012038

IOP Publishing
doi:10.1088/1755-1315/1078/1/012038

1

 
 
 
 
 
 

Deep multimodal learning for residential building energy 
prediction 

Y Sheng1, W OC Ward1, H Arbabi1, M Álvarez2 and M Mayfield1 
1Department of Civil and Structural Engineering, The University of Sheffield, UK 
2Department of Computer Science, University of Manchester, Manchester, UK 

E-mail: ysheng8@sheffield.ac.uk 

Abstract. The residential sector has become the second-largest energy consumer since 1987 in 
the UK. Approximately 24 million existing dwellings in England made up over 32% of the 
overall energy consumption in 2020. A robust understanding of existing buildings’ energy 
performance is therefore critical in guiding proper home retrofit measures to accelerate towards 
meeting the UK's climate targets. A substantial number of predictions at a city scale rely on 
available data, e.g., Energy Performance Certificates (EPCs) and GIS products, to develop 
statistical and machine learning models to estimate energy consumption. However, issues with 
existing data are not negligible. This work adopted the idea of deep multimodal learning to study 
the potential for using Google Street View (GSV) images as an additional input for residential 
building energy prediction. 20,031 GSV images of 5,933 residential buildings in central 
Barnsley, UK, have been selected for a case study. All images were pre-processed using a state-
of-the-art object detection algorithm to minimise the noise caused by other elements that may 
appear nearby. Building specifications that cannot be easily determined by the appearance are 
extracted from existing EPC information as text-based inputs for prediction. A multimodal 
model was designed to jointly take images and texts as inputs. These inputs are first propagated 
through a convolutional neural network and multi-layer perceptron, respectively, before being 
combined into a connected network for final energy prediction. The multi-input model was 
trained and tested on the case study area and predicted an annual energy consumption with a 
mean absolute difference of 0.01kWh/m2 per annum on average compared with what is recorded 
in the EPC. The difference between the predicted results and the EPC may also provide some 
hints on the bias the certificates potentially contain.  

Key Words: Residential building energy; Deep multimodal learning; EPC; Google Street View 

1.  Introduction 
The importance of retrofitting existing housing stocks to a better standard has gradually been recognised 
by governments worldwide as one of the important mechanisms to tackle climate change. Since 2020, a 
large majority of the world’s population has been forced to work from home due to the widespread virus 
COVID-19. In the UK, the official statistics suggested that the residential sector has become the only 
sector that witnessed an increase in energy consumption in 2020 [1]. The Department for Business, 
Energy and Industrial Strategy (BEIS) in the UK is investing almost £6.6 billion to support more retrofit 
projects [2]. To efficiently implement retrofit projects, a proper understanding of the energy 
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performance of existing housing stocks is important. This includes understanding the properties’ current 
insulation conditions and their corresponding energy consumption.  

A large number of existing studies have been conducted to estimate building energy consumption. 
Studies at a large scale usually adopt a data-driven approach and apply a machine learning-based model 
to estimate the potential energy demand [3,4]. These studies rely on available data that provides a range 
of attributes that affect buildings’ energy performance, including the type of building, the fabric of the 
built envelope, and the insulation conditions [4,5]. Various datasets are developed over the years for this 
purpose, but limitations exist. For example, Energy Performance Certificate (EPC) is an official 
document that was first introduced in 2002 by the European Union to improve energy performance and 
raise public awareness [4,6]. The certificate contains information on building characteristics assessed 
by qualified inspectors. From these characteristics, the energy consumption is calculated to represent 
the energy usage under standard operational conditions. This consumption is used by the EPC as one of 
the criteria for energy rating classification and guidance for potential retrofit measures [4,6]. However, 
studies show the EPC recorded consumption exhibits large discrepancies with actual usage [7].  

Researchers are attempting to introduce alternative datasets and methodologies to replace the role 
EPCs play in providing housing characteristics, for instance, real-estate evaluation reports. The real-
estate report is a popular dataset in computer vision but has only been introduced into energy estimation 
recently [8,9]. Similarly, Google Street View (GSV) images are popular dataset in neighbourhood and 
traffic analysis [10,11]. The GSV sensing vehicles drive around at the same time recording images of 
buildings alongside the roads, so this study proposes that this type of data should have the capability to 
provide property visual characteristics for energy performance studies.   

Most existing studies only use a single data source as input [8,9,12]. This study proposes a 
multimodal deep learning network that multiple datasets are used at the same time to predict building 
energy consumption. The concept of using multimodal for deep learning tasks has been gradually 
attracting more attention over the last decade, especially in the field of expression recognition and 
medical diagnosis [13,14]. This study proposes that the visual representations of buildings extracted 
from the GSV can be adopted, combined with textual information from the EPCs, to construct a 
multimodal deep learning network. The two modalities can be used to predict the energy consumption 
individually, at the same time to provide additional explanations and cross-validation to each other 
towards more efficient and more accurate predictions. 

The remainder of this study is structured in five sections. Section 2 provides a brief literature review 
of the theoretical background of building energy performance analysis and related work, leading to the 
motivation of developing a multimodal deep learning network for energy prediction. Section 3 explains 
the methodology of the developed algorithm. The results are presented and discussed in section 4, and 
finally, conclude in section 5.    

2.  Literature review 

  Existing residential building energy study 
The existing approaches can be divided into three subgroups by the main methodologies used: data-
driven; physics-based; and hybrid approaches. Studies using data-driven approaches usually apply 
machine learning algorithms to building characteristics and historical consumption data for city-scale 
building energy prediction [3]. When a historical dataset is not available, for instance, for newly 
developed constructions, physics-based approaches can be adopted. However, physics-based 
approaches usually require professional knowledge about theories of heat transfer [4]. It also involves a 
large amount of time and uncertainties in data preparation, parameter assumption and model setting, so 
is usually applied to individual objects [3]. Both data-driven and physics-based methods have their 
limitations, thereby a hybrid approach was introduced to combine both techniques, for instance, using 
data-driven algorithms to prepare data used in the physics-based approach [3,15].  
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Because this research aims at studying building energy consumption at a regional level, a data-driven 
approach is adopted and will be the focus of the rest of the literature review. Two main findings verified 
the capability of such a method in estimating residential building energy consumption [5]: 

a. buildings constructed in the same place and time tend to have similar building characteristics; 
and 

b. buildings with similar characteristics tend to have similar energy needs. 
These two findings also provide hints on the features that have close associations with building energy 
performance. These features can be grouped into geometric features (such as the type of building, and 
the footprint area) and thermal features (for example, the insulation conditions). A substantial amount 
of existing literature has investigated and experimented with various data inputs and reviewed their 
limitations. 

  Issues with existing data for data-driven approach. The nature of the data-driven approach 
suggests a relatively high dependency on the accuracy of available data. Existing literature has used data 
from a range of sources including GIS products [16,17], EPCs [7,12], real estate evaluation reports [18], 
and also data collected in-situ with specialised sensors [19]. 

In-situ collection of thermal data usually involves infrared thermography, a non-destructive 
technique for object auditing and material characterisation. Collecting the data using thermal sensors 
requires pre-hand knowledge of weather conditions, u-value of the material and access to the internal 
area to calculate the temperature difference [20], which is not applicable for this study.  

GIS products refer to a database that uses or involves a GIS platform to extract, store and exchange 
knowledge of building characteristics. One of the most used data is the 3D CityGML. It is an open data 
model that aims to provide a standard mechanism to describe and store building models in five different 
levels of detail [21]. However, due to the lack of completeness, most of the existing studies are only 
conducted using the Level of Detail 1 (LoD1) model [17,22]. In LoD1, buildings are represented by 
basic geometric floor plans with extruded elevations referring to the building heights. With only the area 
size and building height, the bias of LoD1 is not negligible as the data is missing a great number of 
building elements that play important roles in scaling the buildings’ energy efficiency, such as the 
building fabric and insulation conditions [5]. 

EPCs to some extent contain the information LoD1 neglected. EPC contains information describing 
the shape, type, and insulation conditions of the assessed property. This instrument is not compulsory 
in Europe, so its utilisation varies across different countries, but it is one of the compulsory documents 
in the UK for a property to be able to sell or rent [4,23,24]. The Building Research Establishment’s 
(BRE) Standard Assessment Procedure uses EPC information to calculate and classify buildings with 
different energy efficiencies into 7 rating classes [25]. The EPCs in the UK are publicly available and 
have been a popular dataset for UK housing stock studies. However, more studies are taking place to 
examine the quality of the EPCs and the potential gaps between the EPC-estimated energy demand and 
the actual consumption. Crawley et al. [26] examined the existing valid EPCs and discovered that 1.6 
million buildings in England and Wales are having multiple EPCs of different ratings. Burman, 
Mumovic and Kimpian [27] studied a secondary school in Northwest England and found that there is a 
3.1% of difference per year between EPC suggested energy consumption and the building’s actual usage. 

The real-estate evaluation report is a popular source of data in the field of computer vision [9,18], 
but relatively new in building energy prediction. Researchers consider the photos taken by the real estate 
are good visual representations showing rich information of the building and its surroundings [9]. 
Despotovic et al. [18] developed a workflow to extract building element images (e.g., doors, roofs, 
windows) to classify the corresponding housing energy ratings. They applied the network to 2,065 
different houses and achieved a classification accuracy of 62% when predicting the energy rating. This 
case study shows the potential of applying building photographs in housing energy prediction. But it has 
similar disadvantages as the CityGML LoD1 database has that the images provide more descriptions of 
the properties’ physical characteristics but are limited in actual insulation conditions.  
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  Google street view images as a source of data. Case studies using images from real estate 
evaluation reports show the potential of using photographs for building energy prediction, but it is not 
publicly available. Google street view images (GSVs) can be a potential alternative source of image data 
for building energy prediction. Similar to real estate reports, GSV has been widely used in computer 
vision studies. Example studies have been conducted with GSVs to derive neighbourhood socio-
demographic patterns [28] and traffic auditing [10]. When the GSV van drives around the city, the 
captured scenes are publicly available and can be downloaded with API. Yuan J and Cheriyadat AM 
[29] conducted building height and facade estimation using OSM building footprint and GSV. They 
proposed a methodology to estimate camera position and project street scenes to 2D maps. This study 
shows that GSV images can be used as descriptions for building characteristics, such as building height 
and facade material, which is critical in building energy estimation.        

  Deep multimodal learning 
The lack of accurate data is, however, not unique to building energy analysis. There is a growing interest 
in the potential of developing deep learning models that use multiple inputs [13,14], named deep 
multimodal learning. The nature of this approach is to accept heterogeneous cues from different 
modalities for additional and potentially more comprehensive knowledge of a given task. Similar to the 
five senses human beings have, data can be classified under different modalities, such as image (visual), 
text (word), audio (sound), and physiological signals. Existing applications are in the field of face 
recognition, medical diagnosis, and self-driving systems [13,14], but few applications are in building 
energy prediction. This study considers that describing a property using different modalities with a 
multimodal deep learning approach may to some extent reduce the level of bias compared with unimodal 
approaches where only one type of data is used.   

Table 1. Selected building energy performance-related information from EPC 

Type Data Description 

Reference 
Building reference number A unique number assigned to each EPC 

Full address The full property address 

Numeric 

Total floor area The total floor area in m2 

Habitable rooms Number of habitable rooms 

Heated rooms Number of rooms that can be heated 

Lighting description*  Percentage of low energy lighting  

Categorical Property type Type of property (e.g., house) 

Built form Building type (e.g., detached) 

Floor description*  Type of floor and insulation condition (e.g., 
solid, no insulation) 

Window description* Type of window and glazing (e.g., double 
glazing) 

Wall description* Type of wall and insulation conditions (e.g., 
filled cavity) 

Roof description* Type of roof and insulation conditions (e.g., 
pitched) 

Main heating* Type of main heating used (e.g., boiler and 
radiator) 

Main fuel* Type of main fuel used for central heating 
(e.g., mains gas) 

Output Energy consumption The current energy consumption recorded 
by the EPC in kWh/m2 per year 
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3.  Methodology 
The overall workflow of this study will be explicitly explained in the following subsections. This 
multimodal study mainly used two datasets: EPC certificates and GSV images. The workflow can be 
divided into three main stages: the data acquisition; the pre-processing of the raw data, and finally the 
development and training of the deep multimodal learning network. 

  Data acquisition and pre-processing 

  Energy performance certificates. The UK government has established a website for EPC records 
that allows access and download. The downloaded information is filtered, and only the variables that 
are most related to the current housing energy performance are used for prediction [5] (Table 1).  

After the preliminary study of the EPC records, the issues other studies encountered are observed 
[26], that the records contain abnormal entries and multiple records for one property. The first step is to 
filter these data. Abnormal entries, such as blank or unreasonable values (e.g., the total floor area is 0m2) 
are deleted. The properties with multiple records may have two different reasons, first, the records are 
purely identical data, so only one of these remains; second, the results are records assessed at different 
years that may reflect the changes in building conditions, so the records from the latest inspection date 
are used here. 

The next step is to reorganise the classes of categorical data as inconsistencies exist when different 
inspectors create the records. The redundant categories may cause unnecessary waste on training time 
and computation power. Among all the records listed in table 1, the ones marked with an asterisk (*) are 
the records that require amending before using as inputs. The original lightning descriptions are texts in 
one format describing the proportion of low energy lighting. This study removed the texts, so the 
percentage of low energy lights is used as numeric data input. The rest of the classes follow similar re-
categorising rules. In general, the EPCs contain classes that describe similar characteristics that can be 
combined (e.g., partial double glazing and some double glazing). There are also issues with formatting, 
language being used and units that need amending to be unified.  

 Google street view images. With the full addresses recorded in the EPC, it is possible to query the 
GSV images through a helper API. The API uses geo-coordinates or full addresses detailed to house 
numbers to extract the target GSV images with user-controlled photo specifications. An example of 
GSV obtained for the case study area is shown in the left image in Figure 1. To reduce the amount of 
irrelevant visual information, an object detection algorithm, YOLOv5, is applied to the extracted images. 

 

Figure 1. Example GSV image (left); Detection results for the example image (right) 
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A custom model is trained specifically for this study using over 800 manually labelled GSV images with 
bounding boxes. A weight is calculated to help determine the possibility of whether the detected pixels 
belong to a house feature. The example image input and its detection result are illustrated in Figure 1. 
The algorithm has successfully detected visual contents that look similar to houses. The value on the top 
of the boxes shows how likely the detected feature is a house. The evaluation results using average 
precision (AP) also suggest that the model is sufficient for this study’s aim. AP is a commonly used 
metric in object detection when the detection task is set for a single class. It compares the ground-truth 
bounding box with the detected ones and produces a single value ranging from 0 to 1 [30]. The AP for 
the custom model for this study stays relatively constant after training for around 110 epochs and has 
resulted in an AP of around 0.8. 

Once the houses in each GSV image are detected, these houses are saved as individual images as 
Figure 2. However, as the queried property should be a single building, it is necessary to select one of 
them as the target property when multi-detection appears. This step has taken the patterns found for 
houses’ energy performance in the same neighbourhood, discussed in Section 2 [5], into consideration, 
so even if the properties next to the actual queried house are selected for prediction, the bias should be 
limited. These detected images in various sizes provide the possibility to determine the target house for 
the following energy performance prediction. If multiple houses are detected in the same image, the 
largest house detected is used for the following prediction. 

Selecting the maximum cropped images have resulted in various sizes of input data. Paddings are 
added at the bottom to ensure all images have the same ratio of width and height (Figure 3), followed 
by a step to resize all the images to be 128 × 128 for the CNN model. 

 
Figure 3. Example result after padding and resizing 

  Deep multimodal learning 
The overall structure of the multimodal network is illustrated in Figure 4. The structure of MLP and 
CNN are selected for this study. Unlike applications using CNN and MLP models individually, the 
multimodal algorithm does not process each input completely through the entire algorithm to produce a 
result prediction, the process is designed to stop at the intermediate step, when both CNN and MLP 

 
 

Figure 2. Example cropped images from multi-detection 
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produce four neurons from the inputs, so they can be concatenated and connected with the following 
fully connected layers for the final prediction.  

 
Figure 4. Illustration of the structure of the deep multimodal learning 

The data extracted from the selected EPC records (Table 1) are used as input into an MLP model for 
training and predicting the building energy demands. A multi-layer perceptron is one of the most 
fundamental but powerful machine learning algorithms [31]. As the upper stream of Figure 4 illustrates, 
the MLP is a feedforward algorithm that calculates a function to connect each input with a neuron for 
calculating the outputs.   

The CNN model is designed to process the visual modality. The CNN model is special because of 
its unique convolutional layer that processes the image input and produces representative patterns as 
result [32]. The input GSV images follow the lower stream of processing illustrated in Figure 4. They 
first go through three blocks of layers, each containing a convolutional layer, an activation layer (ReLu), 
and a max-pooling layer to create feature maps that reflect the most representative features inside of 
each scan. A flatten layer is added after the three CNN blocks to connect the model with fully connected 
dense layers and store the processed information in four neurons.  

At this stage, both GSV inputs and EPC inputs are processed through their respective streams of 
learning and all result in a form of four neurons. A concatenate layer is added, so both the processed 
inputs become combined inputs containing features from both the CNN and EPC. Finally, dense layers 
are added to predict the residential energy consumption.  

4.  Case study: Barnsley, England 
The case study was conducted with residential properties in the central region of Barnsley, UK. Overall, 
there are 11,740 EPC records found to be downloadable for central Barnsley. More than 15% of 
properties are found to be associated with multiple entries, filtering and reorganising the data is essential. 
By following the steps explained in the methodology section for data preparation, the input data for this 
case study contains 20,031 GSV images and their corresponding EPC records for 5,933 properties in 
central Barnsley. Property addresses that are unable to match with a GSV image are emitted for this 
study. Among these properties, 74.43% are houses (H), 16.3% are flats (F), 8.74% are bungalows (B), 
and the remaining 0.53% are maisonette (M). Most of the properties have an estimated energy 
consumption between 184 and 300 kWh/m2 per year with a mean value of 224 kWh/m2 per year. The 
average energy usage in central Barnsley is slightly lower than the national average. According to the 
official statistics, the mean energy uses for all existing properties in England in 2021 is around 267 
kWh/m2 per year [33]. There are also extreme cases where the recorded energy consumption is above 
1,000 kWh/m2 per year, but no clear associations are found with any recorded building characteristics.  

Table 2 summarises the main type of building elements for each type of property. Similarities are 
found across different building types, especially in the choice of heating and fuels. This pattern is aligned 
with the status quo of existing properties in England, that according to the latest report by BEIS [1], gas 
is and has remained the predominant source of heating since around 1990. The main difference across 
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building types in Central Barnsley can be seen in the elements that are related to the property structures: 
the floor, walls, and roofs. 

Table 2. Most frequent building features in EPC for properties in central Barnsley. 
Type Floor Window Wall 

B Solid, no insulation; double  Filled cavity  
F (Other dwellings below) double  Insulated cavity  
H Suspended, no insulation double  Filled cavity  
M (Other dwellings below) double  Solid brick, no insulation 

Type Main heat Roof Fuel 
B Boiler and radiators Pitched, 250 mm insulation Gas  
F Boiler and radiators (Other dwellings above) Gas  
H Boiler and radiators Pitched, 200 mm insulation Gas  
M Boiler and radiators Pitched, 100 mm insulation Gas  

5.  Results and discussion 
Three different predictions were conducted to compare and testify whether a deep multimodal network 
performed better in prediction accuracy compared with mono-modal or unimodal networks. More details 
will be discussed in the following. The three predictions are: 

a. A mono-modal network only uses EPC records for residential energy prediction. 
b. A mono-modal network only uses cropped GSV images for residential energy prediction. 
c. A multimodal network uses both EPC records and cropped GSV images for residential energy 

prediction. 

5.1.  Network a: with EPC records 
The MLP model has run for 100 epochs with a batch size of 32. The evaluation loss became relatively 
stable after around 95 epochs. The model reached a result of mean absolute difference of 15.45 kWh/m2 
per annum between the predicted energy consumption and the value of current consumption recorded 
in the corresponding EPC, with a standard deviation (std) of 32.08.  

5.2.  Network b: with cropped GSV images 
With 20,057 cropped and padded GSV images, the CNN model has been trained for 60 epochs with a 
batch size of 32. The designed CNN model processed the input GSV images and attempted to select the 
important features for prediction. Figure 5 is an example feature map created from the intermediate stage 
of the CNN model. Although no clear objects were detected, by comparing between the input layer and 
max-pooling layer, the model highlighted the outline of the building and the edges surrounding the 
building elements, i.e., roof, door, and window, for prediction. The final resulting mean absolute 
difference is 0.06 kWh/m2 per annum between the predicted energy consumption and the value of current 
consumption recorded in the accordance EPC, and an std of 0.06.  

 

 
Figure 5. Example feature maps from the trained CNN model 

5.3.  Network c: multimodal network 
The combined model has been trained for 100 epochs with a batch size of 32. The final result mean 
absolute difference between predicted and recorded values dropped to 0.01 kWh/m2 per year.  
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6.  Conclusion 
This study aims at exploring the potential of using a multimodal deep learning network for residential 
energy consumption prediction. Benefiting from deep learning algorithms’ capability in processing 
complex unstructured data, and the development of sensory systems, there is a growing trend of adopting 
deep learning that accepts multiple streams of data inputs. This study adopted the idea and developed 
an algorithm combining the structure of MLP and CNN algorithm to accept both text and visual inputs 
from EPCs and GSV images. By comparing with the unimodal networks, although all three networks 
can predict the potential residential energy consumption within a satisfying range of accuracy, the 
multimodal deep learning network further decreased the prediction error. This approach provides an 
accurate prediction of residential building energy consumption on a large scale. The results can provide 
insight into the energy performance of residential buildings without accessing to meter readings. A 
proper understanding of the existing housing stocks can help guide the necessary retrofit schemes and 
avoid unnecessary costs.  

Using image data and trainable CNN networks creates feature maps to implicitly encode information 
on the structure of the building, as well as colour information and any urban furniture that may appear 
in the images. Through the training of the CNN component of the model, concatenated with the EPC-
based model, insight into the interactions between these properties is learned. However, issues with 
available data, especially the inconsistencies in EPC data, still exist. Other data may be introduced as 
extra modalities for further studies to reduce the uncertainties. For example, thermal images may be 
helpful to use as a representation of the building insulation conditions. The thermal data may also be an 
indicator of where the thermal bridges exist. Lidar point cloud data could also be a potential modality. 
It may be used to reconstruct 3D representations of buildings to provide details, unlike the LOD1 GIS 
products, of the overall building structure and shape, and the allocations of elements including doors 
and windows. However, the spatial coverage of these potential modalities are all limited, which would 
be the main task to be overcome in future studies.  
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