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Abstract. Any solution to achieving climate targets must be performed at scale. Data driven 
methods allow expert modelling to be emulated over a large scope. In the UK, there are nearly 
30 million residential properties, contributing to over 30% of the national energy consumption. 
As part of the UK Government’s requirement to meet net-zero emissions by 2050, retrofitting 
residential buildings forms a significant part of the national strategy. This work addresses the 
problem of identifying, characterising and quantifying urban features at scale. A pipeline 
incorporating photogrammetry, automatic labelling using machine learning, and 3-D geometry 
has been developed to automatically reconstruct and extract dimensional and spatial features of 
a building from street-level mobile sensing. 

Keywords: building stock, 3-D modelling, street-level capture, computer vision 

1.   Introduction 
Global solutions to achieving climate change targets will require large-scale action. Decision-making at 
a large scale needs high volumes of information. Capturing and processing such information requires a 
significant degree of automation, and the generation of high-quality data that can be used to inform 
decisions reliably and efficiently. 

According to the UN environment programme, in 2020, residential properties contributed to 17% 
global emissions [1]. In the UK, there are nearly 30 million residential properties, contributing to over 
30% of the national energy consumption [2]. As part of the UK Government’s requirement to meet net-
zero emissions by 2050, retrofitting residential buildings forms a significant part of the national strategy 
[3]. We calculate that, in the UK, on average two houses per minute must be retrofitted between now 
and 2050 to meet net-zero targets. The sheer scope of this undertaking means that efficient, large-scale 
solutions are needed: solutions that require high quantities of robust information [4]. 

Access to reliable sources of data can be a challenge for large scale decision making. For example, 
stock models for residential buildings have been developed for use in modelling energy usage and 
occupant behaviour at an individual building level, however such methods rely on a set of predefined 
archetypes [5]. Data sets from Ordnance Survey [6] and Verisk [7] provide attributes for individual 
properties on a national scale, including building footprints, height attributes and usage. Some research 
has looked at incorporating these sources of information, in addition to aerial LiDAR information, to 
generate 3-D stock models [8]. However, while aerial information can provide large scale topographic 
information, details of the facade that can aid understanding is lacking.  
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Reliable and scalable methods for extracting structural features from residential buildings can 
contribute to a wealth of applications, for a wide range of stakeholders. Building 3-D geometric models 
with representative dimensions can be used to expedite and automate energy modelling, potentially 
augmenting or improving the Standard Assessment Procedure (SAP) for energy performance 
certification [9]. Automating the generation of geometric models might be used as part of a larger 
framework automating the extraction of features for building scalable interventions for retrofit or 
manufacturing. 

This work looks at the development of a scalable pipeline for the generation of three-dimensional 
representations of residential buildings with accurate geometric information. Using street-level drive-
by data capture, the pipeline identifies buildings; individual components on those buildings’ facades; 
and builds a 3-D geometric model with localised features that can be used to extract measurements such 
as facade dimensions, and window-to-wall ratios.  

The rest of this paper outlines related work, and outlines the proposed methodology for measuring 
3-D geometry of properties from drive-by capture. The pipeline is evaluated and compared with 
available data, and scalability, limitations and future directions for the pipeline are discussed. 

 

2.   Related Work 
Data-driven solutions to categorising and quantifying the built environment are numerous and long-
standing [10].  Much of the research has been around understanding material stock [4] and predicting 
energy performance [11] at large scales. To this end, building automated energy models from building 
data has been researched in [12] and [13]. The former looks at developing retrofit scenarios at city-scale 
using the building data [12]. In [13], the authors investigate building 3-D data models to simulate energy 
usage. 

The proposed methodology relies on the projecting automatically identified features in drive-by 
images. Identifying properties using existing sources such as Google Street View [14] has been applied 
to building understanding of the urban environment [6, 7]. Feature detection and mapping from Google 
Street View images has been used to build estimate building heights and facade understanding [17]. The 
main limitation with Google Street View data, however, is the spatial and temporal resolution at which 
it is available means that it is not possible to use for reconstructing high quality 3-D geometries. 

Detection of facade features using machine learning has become a popular topic in the last few years 
[8–11]. Tailor-made facade segmentation solutions such as in [19] and [20] report high accuracy but are 
limited in that they are applied predominantly to rectified images, i.e. those that have had lens distortion 
features removed. Due to lack of code availability, and specific requirements for the format of images, 
neither solution were used in this work. Other features that have previously been identified from street-
level images using computer vision and machine learning techniques include building age [21] and 
heating energy demand [22]. 

Identifying building heights at scale using data from aerial remote sensing is also an active area of 
research. Using aerial photography, machine learning methods have been used to build 3-D models of 
buildings from a top-down perspective by predicting depth from single images [14, 15]. Aerial LiDAR 
has also been used to generate large scale datasets of building height attributes, including OS MasterMap 
[6] and the Verisk UKBuildings dataset [7]. The generation of these datasets generally relies on 
automated processes, and as such there can be significant uncertainty where this data has not been 
verified. 

 

3.   A Pipeline for Urban Quantification 
The pipeline for developing a scalable means of quantifying building facades by drive-by capture is 
outlined in Figure 1. The two major components can be summarised as feature localisation and 
identification; and 3-D projection of those features. The projected features can be used to provide 
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measurements of a building. The remainder of this section outlines the key stages in the pipeline from 
capture, through to measuring the 3-D models. 

3.1.   Data Capture 
One of the main requirements for building a process for data analysis and decision making is that it can 
be scaled to neighbourhood or city-level. Drive-by capture of data is not uncommon and is used for 
applications such as mapping [14] or developing self-driving vehicle technology [25]. In the context of 
measuring building facades, the collection of image data with both high temporal and high spatial 
resolution is essential. To this end, a bespoke mobile sensing vehicle is used to prototype the proposed 
pipeline [4]. 

Image data is captured using a FLIR Ladybug5+, a multi-sensor camera rig that captures spherical 
360° image data, at a resolution of 30 MP, and frequency of up to 30 FPS. In practice, there is a trade-
off between pixel resolution and capture frequency due to limitations of bandwidth in saving the image 
files: uncompressed image capture contains the greatest amount of spatial information and so cannot be 
captured at very high frequencies. For the projection and measurement of the processed data, precedence 
is placed on spatial accuracy, so images are captured at full, uncompressed resolution, resulting in six 
images per frame, at a rate of 10 frames per second. Given one of the sensors on the Ladybug5+ faces 
up, we disregard the images from this sensor. At a driving speed of 16 kph, this means we capture 
approximately 10 images per metre driven: two per sensor, each with a resolution of 2048 x 2464 pixels. 
At a distance of 10 m from the sensor, each pixel corresponds to approximately 2.5 cm2. 

Matching images to specific locations requires each frame to have an accurate geospatial reference. 
The mobile sensing vehicle also houses an OxTS Survey+ inertial navigation system: a joint inertial 
measurement unit and global navigation satellite system (IMU/GNSS). The IMU/GNSS system 
provides positional information with an accuracy of up to 0.1 m, and provides information of the 
orientation of the vehicle, including its heading, with an accuracy of up to 0.1°. Vehicle localisation can 
be performed at a frequency of 100 Hz. 

Frames from the Ladybug5+ and measurements from the IMU/GNSS are synchronised with an 
integrated time synchronisation server running on the sensing vehicle. We can thus reliably identify the 
IMU/GNSS position for each image frame. Given the high frequency of IMU/GNSS data, the position 

Figure 1. Overview of the pipeline for extracting quantitative information on individual residential 
buildings. The pipeline takes data from the drive-by capture, along with a building identifier to localise, 
extract and process the raw images of the building. The processed information is then used to generate 
a virtual 3-D representation that can then be visualised and measured. 
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of the vehicle is mapped to each frame using linear interpolation in time. At 16 kph, this means we have 
an approximate accuracy for each frame’s position of 0.25 m. 

The output position information is captured in World Geodetic System (WGS 84), which is then 
reprojected to the Ordnance Survey National Grid reference system (OSNG). The units of positions are 
now in metres, which easily allows for direct comparison when measuring projected information later 
in the pipeline. 

3.2.   Localising Views 
The geolocation of each frame is essential for extracting views of a given residential property. The 
pipeline requires, as input, a building identifier that can be used to associate a given property. This 
identifier can be used to extract location information, such as a polygon from OS MasterMap [6]. Using 
this georeference, it is possible to extract views of the property from drive-by data. 

Given a polygon, the individual image frames can be selected by disregarding all those outside a 
circular region with some pre-defined radius about the polygon, e.g. 20 m. Given the orientation of the 
cameras relative to the van’s heading is known, and the heading is measured using the onboard 
IMU/GNSS, each image for each frame has some geospatial identity, in terms of its location and 
orientation. Images from frames within the predefined region about the property that are considered 
facing the property, i.e. the polygon exists within the field-of-view (FOV) of the camera at a given point, 
are selected. 

With the subset of images, and known geospatial properties of the cameras, the reconstruction 
process can be initialised with known camera poses: intrinsic properties of the camera lens, such as 
FOV; the “centre” of the pose indicating its position in space; and a rotation matrix describing the 
orientation of the camera in 3-D space. This information will help identify features between images and 
reference them for scene reconstruction, as well as perform the reconstruction at real-world scale. 

3.3.   Feature Identification 
To accurately measure a building using drive-by imaging and projection, we need to understand the 
input images at a pixel level. The action of labelling, or segmenting, images, is to assign pixels in the 
image to a set of semantic categories that inform the scene. Semantic segmentation essentially indicates 
what is in the image, and where in the image it is located. In the context of the proposed pipeline, the 
features of interest are those that are present on the building facade and roof: windows, doors, and 
chimneys; as well as classification of the wall and roof. Segmentation of building facades will return 
pixel-level labels of these categories and treat anything else as “background”. 

While it is possible to manually label images, this is a time-consuming activity. Manual segmentation 
would be a bottleneck in the scaling of the pipeline, requiring human intervention for every image. The 

Figure 2. (a) An example image showing the view of a residential building, captured by the mobile 
sensing vehicle; (b) facade label information automatically generated by the trained machine learning 
model; (c) the view of the building masked by the label information; (d) a selection of SIFT features 
detected in the masked image, overlaid on the original view. 

(a) (b) (c) (d) 
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alternative is to utilise machine learning methods to automatically perform semantic segmentation of 
the building facades. Such an approach has been addressed in previous research, such as [19]. Building 
on their findings, a deep convolutional encoder-decoder model was trained. The architecture of the 
model is based on Deeplabv3+ [26] with an Xception decoder [27]. This model essentially builds a 
classifier by finding a low dimensional representation of images that accentuates features that can be 
easily classified, the encoder; and a pathway for these low dimension features to be mapped back to 
classified features back to the original image, the decoder. Training the model on a set of manually 
labelled building facades adapts this encoder-decoder architecture to take in street-level images and 
return a pixel map of labels. 

The semantic segmentation model training setup used a set of 6000 manually labelled images, split 
80:10:10% between training, validation and testing. The starting model parameters were initialised 
randomly, and the model was trained for 100 iterations. The test accuracy, i.e., the average percentage 
of pixels correctly classified, was 93.6%. The mean intersection over the union (IOU) across all labels, 
which indicates the degree of overlap between predicted and true segmented regions, was 78.9%. These 
metrics are in line with state-of-the-art (SOTA) segmentation methods, e.g., [19], [20], for both general 
purpose datasets and dedicated facade segmentation research.  

The trained segmentation model is used to automatically create label maps for facades in the pipeline. 
These labels can be projected to 3-D to aid measurement, as discussed in the next section. An additional 
benefit of these label maps is that they can be used to mask the original images and remove background 
features. This will be beneficial during the 3-D reconstruction, as the final model will contain only 
features belonging to the building, without additional objects like cars, or other urban furniture such as 
trees and lampposts. Figure 2(a-c) shows an example of a labelled and masked image using the process 
outlined in this section. 

3.4.   Projecting the Scene 
Once the set of views has been labelled and masked, the reconstruction aspect of the pipeline is used to 
generate 3-D models. Details of the image file paths, intrinsic camera properties, such as field-of-view, 
and pose information are collated into intermediary files used to initialise the 3-D model generation 
process. 

The reconstruction process uses a combination structure-from-motion techniques, and multi-view 
stereoscopy [28]. From multiple perspectives of a single object, in this case a residential building, it is 
possible to localise features within 3-D space, and from this build a 3-D surface model of the object.  

Reconstructing the scene, i.e., registering camera poses in 3-D space and matching features between 
images, is performed through a feature detection and matching pipeline. The first step is to identify 
“features” in the images: these are calculated using the scale-invariant feature transform (SIFT), an 
algorithm that detects descriptive properties in an image that can be paired together regardless of any 
perceptive transformation or distortion they are affected by, e.g., rotation, translation or shearing [29].  
SIFT features are widely used for object recognition in applications such as video tracking and image 
stitching, as well as 3-D reconstruction [30]. Figure 2(d) illustrates the SIFT features detected from a 
drive-by captured image. 

With the list of features extracted from each image, the next step is to pair images based on their 
relative poses. Typically, this process relies on finding common SIFT descriptors between images and 
assigning pairings based on matches. However, since we have initialised the process with known poses, 
it is straightforward as all images are chosen with views of the same objects. Each image is paired with 
all other images, and between these pairings, the SIFT features are compared. Features are matched 
between images where they contain the same descriptive information, independent of any distortion or 
transformation [29]. The algorithm for feature matching simplifies pair matching by assuming a feature 
can only have one corresponding match. Such an assumption has reduced capacity on structures that 
contain repetitive properties: a common occurrence in pictures of buildings due to brick patterns, for 
example. Despite this limitation, the process is fairly robust. To improve pairwise matching, we 
duplicate the feature detection and matching process on both the original images and the masked images. 
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In the latter case, we use masks to limit the amount of background that is reconstructed. However, the 
removal of extra information about the scene can limit the effectiveness of scene reconstruction. To 
mitigate this, applying feature matching on the original image will allow other urban furniture to be used 
to give spatial context to the scene and improve estimation of the 3-D projection. With the combined 
information of known poses, and reconstructed scenes from both original and masked images, the 
corrected camera poses and 3-D features can be used to build a surface map. 

To build a 3-D surface map of the building, which will be output as a mesh of points, edges and 
faces, depth maps of each input are generated by comparing matching points with the properties of the 
cameras, such as focal distance and sensor sizing[31]. These depth maps, along with the reconstructed 
scene, can be used to create a mesh by triangulating nearby points [32]. The resulting 3-D model is 
constructed relative to the original camera poses, and thus its geometry corresponds to real-world sizing.  

Images and label maps can be projected to the 3-D model using a process called texturing [33]. In 
the case of the former, this serves largely for visualisation, but in the case of the latter, the labels 
projected onto the 3-D surface can be used for feature localisation and measurement of the facade. Figure 
3 shows an example of residential buildings reconstructed from drive-by capture. 

3.5.   Measuring the Cityscape 
From drive-by capture to projection, the proposed pipeline creates a 3-D representation of residential 
buildings in real-world coordinates. Features of the facade are mapped into 3-D space. Measuring such 
features on the projection can give estimates of the structure, to be used for creating an understanding 
of the geometric properties of the building. Such properties include building height, facade height, 
window-to-wall ratio, and roof pitch; these can be used to generate building energy models, or to inform 
stock models. 
 

Figure 3. Examples of three reconstructed houses. Measurements overlaid on the left-most property 
show the dimensions of the facade, total structure, and a window and door. The central property shows 
the reconstructed facade with no annotation. The right-most property shows the results of labels 
projected onto the surface, which are used to measure the buildings. 
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4.   Evaluation 
The proposed pipeline was applied to a set of buildings using images obtained from drive-by sensing. 
Polygons were obtained using topographic identifiers (TOID) in OS MasterMap [6].  These polygons 
were used to isolate views of the corresponding properties and execute the reconstruction and 
localisation process. The reconstruction process is implemented using the Python bindings for 
AliceVision Meshroom [28]. Label information from the image segmentation is projected onto the 
resulting 3-D surface maps. 

In Figure 3, three examples of reconstructions are shown along a street in Sheffield, UK. The original 
images are applied as textures in the first two properties, and the right-most property has pixel labels 
projected on. Extracted dimensions are also overlaid on one of the properties, showing the dimensions 
of the facade, as well as extracted geometry of windows and doors. In addition, the total height of the 
building and depth of the reconstruction are shown. Comparing these results with the properties from 
the Building Height attribute for the corresponding TOID [34], the total height of the building is 
measured at 8.40 m, with 8.8 m (reported only to 1 d.p.) in OS MasterMap. The height-to-the-eaves is 
reported as 4.9 m, versus the 5.54 m measured from the 3-D reconstruction. The discrepancies in values 
here may be attributed to limitations in the respective measurement methods and the uncertainties that 
they introduce. In the case of extracting total building height, it is likely that the roof is not fully 
reconstructed given limitations of the view from the street – a combination of camera FOV and slope of 
the roof mean the apex is not captured, especially at close range. According to the TOID polygons, the 
total depth of the building is 8.33 m by 6.78 m, meaning that width-ways the reconstruction is close, but 
we have only captured approximately two-thirds of the roof from eave to apex. However, it is possible 
to infer the roof pitch as 42.9°. 

5.   Discussion 
The pipeline outlined in this paper is designed to build spatially accurate models using visual and spatial 
information that can be measured. Whereas with many existing datasets that infer properties of buildings 
using aerial surveys, the proposed pipelines are generated from street-level surveys. This gives an 
alternative perspective to inform quantitative methods and decision making. This section discusses the 
potential scalability of the proposed pipeline and outlines where street-level modelling can mitigate 
limitations in aerial surveying and highlight new sources of uncertainty. Possible future research 
expanding and utilising the pipeline is discussed and, finally, conclusions are drawn summarising the 
work. 

5.1.   Scalability 
The current implementation of the pipeline is 
designed to get geometry on a single property. The 
design allows for parallel execution when seeking 
to build 3-D geometry for individual properties. 
While reliant on the same input data set of drive-
by capture, each reconstruction is independent, 
computational requirements notwithstanding. 

The computational time for the reconstruction 
process grows quadratically with the number of 
views, e.g., for 5 times as many images, the 
computational time will grow 25-fold. This was 
part of the motivation for building a single-house 
reconstruction pipeline, versus generating a 3-d 
model of a whole street or neighbourhood and 
analysing this, similar to aerial LiDAR-based 
approaches. In Figure 4, the relative computation 
time for three scenarios is illustrated: the full 

1 5 10 15 25
Nb. houses reconstructed

Re
la

tiv
e 

tim
e

combined sequential parallel

Figure 4. Relative time to reconstruct houses based 
on a combined reconstruction of all houses; using 
the proposed pipeline sequentially; and using the 
proposed pipeline in parallel. 
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reconstruction is shown to have high relative runtime; and the outlined single-house reconstruction 
executed both in sequence and in parallel. The figure demonstrates the scalability of the current 
approach, and the further benefits that might be gained by parallelisation. 

Additional speed-ups can be found through preparation of the input data during the reconstruction of 
multiple households. In the drive-by dataset, a given image may contain views of multiple houses: this 
can be seen in Figure 2. Pre-labelling and masking the dataset would avoid some duplication of 
computation in the preparation of data. Similar gains may be made by pre-calculating SIFT features on 
the images.  

5.2.   Uncertainty and Limitations 
As discussed throughout the paper, there are some limitations to the proposed methodology. The first 
quantifiable source of uncertainty is in the localisation of the sensing vehicle, which can only reliably 
be located to within 0.1 m, but may be less accurate, in practise. This inaccuracy is mitigated somewhat 
by reducing constraints in the scene reconstruction process, where only the overall scale and orientation 
are maintained. Similarly, the segmentation of facade features will always contain some error, despite 
having SOTA accuracy: for example, occluding objects such as trees will reduce the quality of 
segmentation. Notably, the metrics for the trained models are given as average over all labels. However, 
metrics for individual classes indicate that most features are classified with accuracy well over 95%. 
The exceptions are the roof features, which are classified by the model with pixel accuracy of 81%. 

Robust validation of the work is also currently a limitation. Building measurements for height were 
compared against OS MasterMap building attributes. As mentioned, there are limitations with reliably 
extracting the total building height, but the facade height, i.e., height to the eaves, can be compared. 
However, the availability of verified data in Sheffield is limited: of over 382,000 TOID polygons 
available in OS MasterMap, the 99.65% of the building height attributes have a confidence of “99”, 
meaning they are unverified [34]. The remaining polygons comprise buildings “for which [OS] have not 
been able to calculate some or all” attributes. Full validation of the findings in this work, and of the 3rd 
party datasets, such as OS MasterMap and Verisk UKBuildings, will require manual survey. 

Independent of uncertainty, another limitation is the sheer volume of data obtained by drive-by 
capture. In terms of raw image data, 1000 images is approximately ~1 GB, which given each frame 
comprises six images, means the Ladybug5+ can capture 1 GB of data every six seconds. Even at a 
reduced framerate of 7.5 FPS, used in the prototype, the total storage required for a 75-minute drive is 
150 GB.  Any solution applying the pipeline at scale would need to consider the storage requirements, 
as well as the computational requirements. 

5.3.   Future Work 
For large-scale reconstruction, it may be beneficial to pre-process much of the data independently of 
individual buildings. As discussed in section 5.1.  , localising and labelling views in preparation would 
minimise repeat computations where views contain multiple properties. The preparation of such a 
dataset may also have benefits for other research that relies on high resolution, localised views of 
properties, such as [15] and [16]. 

Augmenting additional sensing information, for example thermography, is one possible avenue of 
research. Projecting localised temperature data, in a similar fashion to the feature labels that have been 
projected in the proposed pipeline, would give 3-D thermal information that could be used for 
understanding material properties of the facade, or for fault detection, e.g., in double-glazing windows. 

Given the respective limitations of both the street-level sensing used to generate the 3-D models, and 
aerial sensing used to calculate building heights in OS MasterMap and Verisk UKBuildings, there may 
be some merit in combining both sources of data to get a greater perspective of properties: combining 
facade information that is difficult to obtain from aerial capture with the top-down information not 
captured by the mobile sensing vehicle. 

The scope of this paper addresses the pipeline that localises and reconstructs 3-D geometry, and 
measurement of the resulting projected features is done manually. However, with spatially localised 
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features it may be possible to automatically extract geometry for use in scalable modelling: a drive-by 
capture that is then automatically processed, reconstructed and measured would provide an invaluable 
data source for stock modelling, for example, providing facade information that is not available from 
datasets generated from aerial remote sensing. Automatically generated data may also be used to build 
up large-scale digital twins. 

5.4.   Conclusions 
In this paper, we have outlined a scalable process for building 3-D reconstructions of residential 
buildings. We outline the data capture and modelling pipeline, and demonstrated the efficacy and 
scalability of extracting accurate building features. We discussed the usability of large-scale 
quantification to energy and stock modelling, and have described how these can be used to build urban 
digital twins to model retrofit interventions. Future work will involve manually validating the results 
given the unavailability of verified data at scale. 
 The outputs for this work may be incorporated into building stock models, or used as inputs for 
energy modelling – both key requirements in the modelling of retrofit solutions. The raw data may also 
be combined with other sensing data, including thermography and LiDAR, both from street-level and 
aerial sources.  
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