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Abstract1

Data driven approaches to addressing climate change are increasingly becoming a necessary2

solution to deal with the scope and scale of interventions required to reach net zero. In the3

UK, housing contributes to over 30% of the national energy consumption, and a massive4

rollout of retrofit is needed to meet government targets for net zero by 2050. This paper5

introduces a modular framework for quantifying building features using drive-by image6

capture and utilising them to estimate energy consumption. The framework is demonstrated7

on a case study of houses in a UK neighbourhood, showing that it can perform comparatively8

with gold standard datasets. The paper reflects on the modularity of the proposed framework,9

potential extensions and applications, and highlights the need for robust data collection in10

the pursuit of efficient, large-scale interventions.11

1 Introduction12

Buildings and their operation contribute to nearly 17% of global carbon emissions (UNEP, 2020).13

Of these emissions, 61% can be mitigated, according to the IPPC (2022), with the largest share14

of mitigation potential coming from the retrofit of existing buildings in developed countries such15

as the UK. The report also highlights that the next decade is critical for building technical16

capacity to ensure this potential is realised (IPPC, 2022). Technical solutions to the mass17

implementation of retrofit require robust, large scale data and modelling.18

Large scale modelling of residential buildings with a resolution of information at the individual19

building level requires high volumes of data. Capturing and processing high quality data that20

can be used in decision making both reliably and efficiently, in high volumes, will require a21

substantial degree of automation. However, access to reliable sources of built environment data22

can be a challenge. Building stock models, for example, have been developed for use in modelling23

energy usage and occupant behaviour at an individual building level, however such methods have24

relied on a set of predefined archetypes (Shorrock et al., 2005). Such archetypes, that describe e.g.25

age cohorts, can miss particular nuances in different construction types, or building performance.26

In Great Britain (GB), datasets such as those provided by Ordnance Survey (Ordnance Survey,27

2022b) and Verisk (Verisk, 2022) provide attributes for individual properties on a national scale,28

including building footprints, building heights and usage. Previous work has looked at this data,29

along with aerial point cloud data, to produce city-level stock models (Steadman et al., 2020),30
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however while the aerial data can provide large scale topographic information, there are limited31

resources to provide information on facades and other street-level features that are essential in32

aiding understanding of the urban environment, something that is essential for enacting retrofit33

measures.34

Energy consumption per unit floor area is a metric used to assess the energy efficiency of35

a building. In the UK, this is most commonly reported in the form of energy performance36

certificates (EPC). The generation of EPCs requires a manual survey of the property, which37

is then used to input information into the so-called Standard Assessment Procedure (SAP) to38

estimate energy consumption (BRE, 2012). These assessments take approximately 45 minutes39

per building to complete and are conducted as required by law: most commonly when a property40

is sold, or every ten years in the case of rental properties (ReallyMoving.com, 2022). However,41

reports of issues in EPC reporting are widespread (Hardy and Glew, 2019). For example, the42

Retrofit Playbook, a guide to retrofit for policy makers in the UK published by the UK Green43

Buildings Council, describes EPCs as “not fit for purpose”, and highlight this as a barrier to44

enacting home retrofit in the UK (UKGBC, 2021). To help overcome these barriers, a framework45

is presented in this paper that uses drive-by captured image data to generate energy models at46

a high scale.47

The framework is designed as a set of modular components, defined in terms of their input and48

output, with the aim to simulate energy consumption for individual properties at scale. The49

framework is a data-driven approach that utilises computer vision techniques, including machine50

learning and 3-D reconstruction, to measure and assess buildings using street-level images and51

use this to build models to simulate energy consumption. Each component of the framework is52

discussed, and the approach applied to a case study of residential buildings in a neighbourhood53

in the UK. The capabilities of the proposed framework are compared against available data,54

and the results critically appraised in terms of performance against this existing data. The55

framework also utilises a modular approach that could be used in conjunction with other methods.56

Furthermore, the paper addresses the potential scope for extension and generalisation of the57

framework with additional modalities of data, such as thermal imaging, and the application to58

other quantification problems in built environment research.59

2 Framework Design60

This section presents a detailed overview of the proposed framework for capturing and localising61

street-level images and using them to estimate the physical properties of houses for simulation of62

energy consumption. Figure 1 provides an illustration of the framework as a pipeline of modular63

components mapping from data collection and localisation to energy modelling. Each framework64

component highlighted in Figure 1 is described in the following sections.65

2.1 Data Collection and Localisation66

A scalable platform for estimating building properties and energy consumption requires a scalable67

solution to data generation and processing. Data analysis and decision making that can be68
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performed at neighbourhood- or city-scale requires large quantities of high quality, localised69

data.70

2.1.1 Capture71

Drive-by data capture is not uncommon, and has been used for applications such as mapping72

(Anguelov et al., 2010) or in the development of self-driving vehicle technology (Gwak et al.,73

2019). To effectively perform feature and geometry extraction, image data needs to be available74

in high temporal and spatial resolution. In this research, a bespoke mobile sensing vehicle is75

used to prototype the proposed framework (Arbabi et al., 2021).76

Image data is captured by driving the sensing vehicle along residential streets. The mobile77

sensing vehicle uses a multi-camera rig1 to capture spherical image data using five radial cameras78
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Figure 1: Overview of proposed energy consumption prediction framework, outlining individual
components of the framework. Components of the framework are data collection and localisation
(Section 2.1); age detection (Section 2.2); feature extraction (Section 2.3) and 3-D reconstruction
(Section 2.4); and geometry extraction and energy modelling (Section 2.5). Aspects of the
framework highlight where data is generated by the process, through either a process contributed
by the authors or through predefined processes from publicly available software
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and one upwards facing camera, each with a resolution of 5 megapixels (MP), capturing with79

a frequency of up to 30 frames per second (FPS). In practise, a trade-off is made between80

pixel resolution and capture frequency due to limitations of bandwidth in saving the images:81

uncompressed images comprise a huge amount of data so cannot be captured at very high82

frequencies. In this paper, higher resolution images are prioritised, with fewer high resolution83

images having been generally found to produce better quality results in the 3-D reconstruction84

component of the energy prediction framework; to this end, six 2048× 2464 pixel images are85

captured at a rate of 10 FPS. Driving through a neighbourhood at approximately 4.5 m/s86

(≈ 16 km/h) around 12 images are captured per metre driven. At a distance of 10 m from the87

van, each pixel corresponds to approximately 2.5 cm2 of, e.g., building facade.88

A contemporary analogue to the image data produced is Google Street View (Anguelov et al.,89

2010), which has been used in both urban data projects (Li et al., 2017) and wider socioeconomic90

research (Gebru et al., 2017; Nguyen et al., 2020). Google Street View data is made available91

through a paid-for API. However, images are only available at a maximum pixel resolution of92

0.4 MP and are restricted in the available spatial resolution, with the API returning only the93

nearest image to a given location, which can limit details that can be extracted for a given94

property (Google, 2022).95

2.1.2 Localisation96

travel path

view distance

view
 direction

field of view

y [m] /
northing

x [m] / easting

Figure 2: Sketch of a localised “view”, associated
with an image, generated relative to the position
and travel path of the sensing vehicle

With the high volume of image data captured97

using a mobile sensing vehicle, a clear indexing98

scheme is required. Turning the images into a99

geospatial dataset requires robust localisation100

of the captured data, allowing images to be101

associated with a spatial pose which, in this102

paper, can be used to associate views with103

given houses. Onboard the sensing vehicle104

used, a georeferencing system2 comprising an105

inertial measurement unit (IMU) and global106

navigation satellite system (GNSS) are used107

to monitor and map the location of the vehicle108

with an accuracy of up to 0.1 m. The IMU109

also provides the orientation of the vehicle, up110

to an accuracy of 0.1◦. Localisation of the111

vehicle can be performed at a frequency of up112

to 100 Hz, equivalent to every hundredth of a113

second.114

The onboard imaging system and IMU/GNSS share a time synchronisation system, which allows115

for reliable identification of the IMU/GNSS position for each image frame. With high frequency116

georeferencing of the van location, the position of each camera can be identified with linear117

2OxTS Survey+

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4283458

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



interpolation of the vehicle’s position and orientation at capture time. At a driving speed of118

4.5 m/s, there is an approximate accuracy assumption, for each camera frame’s position, of119

0.25 m. The output position is recorded in World Geodetic System (WGS 84), i.e. longitude and120

latitude. For use in the UK, the coordinates are reprojected into the Ordnance Survey National121

Grid reference system (OSGB 1936), which gives the van’s position within the UK in metres,122

allowing for direct measurement of 3-D models generated later in the framework.123

Localising each frame is essential for extracting views of a given house. Individual “views” are124

constructed to represent the perspective of a given image: the orientation and position of each125

camera relative to IMU/GNSS unit, combined with the post-processed measurement of the126

vehicle’s location and orientation will give the centre point of the camera, in OSGB 1936, and127

the view direction of the camera. From this, a view is designed by creating a circular sector128

from the absolute position of the camera, with some predefined view distance and field-of-view.129

A sketch of this view is shown in Figure 2, highlighting one of the five radial views generated130

from image data. The upward facing camera is disregarded in further processing.131

As input to the framework, some building identifier is required to indicate the property of132

focus. Two such identifiers commonly used for UK buildings are the unique property reference133

number (UPRN) and Ordnance Survey topographic identifier (TOID). There are widely available134

resources to link between these two references, as well as with other identifiers such as address135

(Ordnance Survey, 2022a,c). With these identifiers, existing geospatial information of the136

property such as its footprint can be extracted (Ordnance Survey, 2022b). Such information137

can be used to associate localised images from drive-by capture with individual properties, by138

finding intersections between the generated view and geospatial building information.139

2.1.3 Generating perpendicular views140

Due to the setup of the cameras, the images captured in the drive-by do not show perpendicular141

“face-on” views of properties. For the age detection component of the framework, these views are142

desirable as they provide a clear focal point for learning models. Such perspectives, however, can143

be generated by reconstructing all images in a single frame as a panoramic image showing the144

radial view of the sensing vehicle. Slicing this panorama can be used to create artificial views145

to show new perspectives, including views perpendicular to the vehicle. However, these views146

are not suitable for the reconstruction component, as they augment the images and remove147

contextual information about the camera.148

2.2 Age Detection149

To estimate thermal properties of a building, statistical estimates of thermal transmittance, in150

the form of u-values, are used due to the lack of comprehensive knowledge of thermal flux in151

exterior features, such as walls, windows and roofs. The TABULA project provides estimates of152

u-values based on age-based statistical archetypes for countries in the European Union, including153

for Great Britain in the UK (BRE, 2014; Loga et al., 2016). Predicting the age-cohort will allow154

the u-values from TABULA to be used to predict energy consumption.155
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2.2.1 Model156

To classify the image data, a deep convolutional neural network (DCNN)-based model is used157

to estimate age cohort. Similar to the model presented in Zeppelzauer et al. (2018), the age158

detection model used in this paper relies on a patch-based classification and fusion approach,159

whereby the image is divided into subregions and each region is classified before an average160

pooling of the predicted age for each patch produces a single estimate.161

The age detection model can be considered as three distinct elements: the feature selection,162

which extracts patches from the input image and stacks them into a single tensor; the backbone,163

a DCNN, that identifies and emphasises specific features within the patches; and a prediction164

layer, that distinguishes the features into classes, pooling classified patches to create a single165

unified prediction for the age cohort of the given image. Figure 3(a) shows an illustration of the166

model from input to prediction. The hyperparameters of the model are the number and size of167

patches, and the choice of backbone model. In the implementation of the framework, ResNet-18168

is used as a backbone, a common DCNN used in classification problems, with widely available169

implementations (He et al., 2016; PyTorch, 2022).170

Table 1: Alignment of categories of age cohort used in Verisk UKBuildings, used to train the
age detection model; TABULA archetypes used to estimate u-values, and aggregation reported
in energy performance certificates (EPC)

UKBuildings TABULA EPC

Historic pre-1919 before 1990

1900-1929
Interwar 1919-1944

1930-1949

Postwar 1945-1964

1950-1966

Sixties Seventies

1965-1980

Modern

1967-1975

1976-1982

1981-1987

1983-1990

1987-1990

1991-2003
1991-1995

1996-2002

2003-2006

2004-2009
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2.2.2 Training and Validation171

The age detection model was trained using a sample of 2463 images of houses in South Yorkshire,172

UK, captured perpendicular to the mobile sensing vehicle, using the panorama slicing algorithm173

described in Section 2.1.3. Building age cohorts were obtained using Verisk UKBuildings (Verisk,174

2022), a geospatial dataset with a small number of attributes for residential properties in GB.175

The aggregation of ages into cohorts is shown in Table 1, showing how the cohorts align with176

the TABULA age categories, as well as the aggregation used in EPCs. While there is no perfect177

alignment, the reliable availability of building ages in UKBuildings dictated its use as a label set178

for training and validation.179

The houses were randomly sampled from the capture data such that the number of houses in180

each age cohort was approximately equal: 487 houses were ‘Historic’; ‘Interwar’ and ‘Postwar’181

each comprised 496 houses; and 492 each of ‘Sixties Seventies’ and ‘Modern’. Houses for training182

and validation were sampled from captured data in the South Yorkshire region, including183

neighbourhoods in Sheffield and Barnsley, but excluding Doncaster as this is used in the case184

study later.185

The dataset was randomly subdivided into training, validation and testing sets, at a ratio of186

80:10:10%, respectively. Training was performed initially for 50 epochs with early stopping using187

validation loss at 32 epochs to prevent overfitting. Each epoch involved an evaluation of the188

model, performed with a batch of N = 8 images before updating the parameters. Each image189

was subdivided into P = 32 random 32×32 patches extracted from the middle 50% of the image,190

and stacked and reshaped into an (NP ) × 64 × 64 batch tensor before propagating through191

the backbone and classification layers. The output predictions are reshaped and averaged to192

produce a prediction for each class. The loss used cross entropy, and the Adam optimiser was193

used with a learning rate of 0.003. The weights of the backbone were initialised with pretrained194

weights for the classification of the ImageNet dataset to provide a well generalised starting point,195

but were not fixed (Kornblith et al., 2019; PyTorch, 2022). All other weights in the model were196

initialised randomly.197

After 32 epochs of training, the validation accuracy was 71.2%, and the testing accuracy was198

68.9%. The performance of the trained model is higher than that of the model proposed in199

Zeppelzauer et al. (2018), but this could be accounted for by difference in the number of classes,200

number of training, relative homogeneity of neighbourhoods in the training set and the different201

approach to patching the images.202

2.3 Feature Extraction203

2.3.1 Labelling Images204

Understanding images at a pixel level provides a means to identify features of a building facade. In205

the framework, projecting labelled features into 3-D allows for the measurement and localisation206

of individual components of the building. The action of labelling, or segmenting images, is to207

assign each pixel to a set of semantic categories that inform the scene, essentially highlighting208

what is in an image and where it is located. In the proposed framework, the features of interest209
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Figure 3: Illustrations of the two machine learning models used in the implementation of the
proposed framework. (a) Age detection, using image patching to select features and pass through
a backbone network, e.g. ResNet-18, and predict age cohorts based on average patch classification;
(b) Feature extraction using semantic segmentation of images using the DeepLabv3+ architecture
that encodes image features to different levels using a deep convolutional network, e.g. Xception,
and spatial pyramid pooling, before decoding the features to pixel classes using convolution
and concatenation of mixed-level features. Both illustrations indicate the dimensions of data
throughout, where N is the number of H × W images processed, P is the number of S × S
patches extracted, and C is the number of categories in the respective classification

are properties of the building facade and roof, namely windows, doors and chimneys, along210

with classification of the wall and roof. Semantic segmentation of building facades will return211

pixel-level labels of each category and treat anything else as “background”.212

Manual segmentation of images is possible, but to do so on the scale required in the framework213

would be prohibitively time-consuming. To this end, machine learning approaches are utilised, as214

with the age detection component of the framework. Semantic segmentation of building facades215

is a well studied topic, with dedicated models designed around extracting building features (Dai216

et al., 2021; Ma et al., 2022). In this paper, we use DeepLabv3+, an out-of-the-box DCNN-based217

encoder-decoder model that is used for a wide range of semantic segmentation problems (Chen218

et al., 2018). The decision to use DeepLabv3+ was predominantly due to easily accessible219

implementations (PyTorch, 2022). The relative simplicity of the segmentation problem, in that220

facade features are typically simple rectangular shapes, lends to the idea that a generalised221

semantic segmentation model will perform well.222

The DeepLabv3+ model is built around an encoder-decoder architecture. The encoder part223

generalises so-called “high-level” and “low-level” abstract features using a DCNN backbone, most224

commonly Xception (Chollet, 2017), and a series of algorithms called spatial pyramid pooling225

that learn to generate a low-dimensional representation of the models. These features are fed226

into the decoder part of the model, which learns a transformation to map these features to pixel227

level for classification. Training the model on a set of manually labelled building facades adapts228

the model to take in street-level images of houses and return a pixel map of semantic labels.229

Figure 3(b) shows an illustration of the basic architecture of the semantic segmentation model.230

The model was trained using a set of 6000 directly captured images from the mobile sensing vehicle,231

which were manually annotated to highlight windows, walls, roofs, doors and chimneys. A small232
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proportion of the images used contained no labelled features, to provide better generalisation of233

the trained model. The image was split 80:10:10% between training, validation and testing, and234

was trained for 100 epochs. No early stopping was employed, but epochs were capped at 100 due235

to limits in computational resources. The test accuracy of the model, i.e. the average percentage236

of pixels correctly classified, was 93.6%. A more discerning metric, the mean intersection over237

the union (IOU) across all labels, was recorded as 78.9%. The IOU quantifies the degree of238

overlap between predicted regions and true segmented regions, and is widely used in classification239

problems (Dai et al., 2021). The results for the trained model are in line with state-of-the-art240

semantic segmentation work, e.g. (Dai et al., 2021; Ma et al., 2022). Figure 4 shows the results241

of the trained model alongside the ground truth for an example image in the test set.242

2.3.2 Masking Images243

The trained segmentation model is used to automatically create label maps for facades to be244

used for projection and measurement in the framework. An additional benefit of these label245

maps is that they can be used to mask the original images to remove background features, which246

is beneficial during 3-D reconstruction, as the final model will only contain features belonging247

to a building, without additional objects like cars or other urban furniture such as trees and248

lampposts. Reconstructing only the building in the images reduces the amount of post-processing249

required to extract geometries from the 3-D model. An example of a masked image is shown in250

Figure 4.251

2.4 3-D Reconstruction252

Once a set of views of a building has been labelled and masked, the 3-D reconstruction component253

of the framework is performed. Using the known localised views, as described in Section 2.1.2,254

along with intrinsic properties of the cameras, such as focal distance and field-of-view, poses can255

(a) (b) (c)

Figure 4: Demonstration of labelling and masking of a building facade in a drive-by captured
image. (a) The raw image; (b) A label mask resulting from evaluation of the trained semantic
segmentation model; (c) The masked image obtained by removing “background” features
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be reconstructed to build 3-D models with real-world coordinates. Mapping image and label256

data onto these 3-D models also allows for specific facade features to be measured in real-world257

coordinate space for use in energy modelling.258

2.4.1 Defining Poses259

Generating poses from the data is required to codify the spatial information about each image.260

In the framework, for a given building, there is a geospatially located polygon representing its261

global position within GB in metres. Also localised are the position and ‘view’ of associated262

images that contain the given building, identified during the localisation step. To generate263

intermediary data used for 3-D reconstruction, positions are centred relative to the centroid of264

the polygon, by simply translating the global position of the images to be positioned relative to265

the polygon, allowing for easier measurement of the output reconstruction.266

Additionally, intrinsic camera properties such as the focal length and lens distortion, as well as267

the orientation in 3-D space of the camera, are attributed to each image pose. This process is268

repeated for both the original images and the masked images to create two sets of reconstruction269

data.270

2.4.2 Generating 3-D Building Model271

Once a set of poses is generated from the labelled and masked images, the 3-D reconstruction272

component of the framework can be used to build geometric models of buildings. Using a273

combination of structure-from-motion and multi-view stereoscopy, the multiple perspectives of274

the building can be used to localise features and create a surface model in 3-D space (Griwodz275

et al., 2021). The first step in the generation of a 3-D model is the detection and extraction of276

the so-called “features” in each image. These features are identified using the scale-invariant277

feature transform (SIFT), a widely used algorithm that detects abstract descriptive properties in278

an image, based on various properties such as sudden changes in colour or shape. The invariance279

of the features allows them to be paired together regardless of any perceptive transformation280

or distortion they are affected by, e.g. rotation, translation or shearing (Lowe, 2004). SIFT281

features have been used across computer vision applications, including object recognition in282

video tracking and image stitching, as well as 3-D reconstruction (Peng et al., 2009). The ability283

of SIFT to provide a generalised representation of features in images allows for the pairing and284

matching of objects to create correspondences in the building facade and wider urban furniture285

in the localised images.286

The list of features extracted from each image is used to pair images based on their relative287

poses. Typically, in a structure-from-motion pipeline, this process relies on finding common SIFT288

descriptors between images and assigning pairings based on matches. However, the localisation289

gives known poses which allows for simpler assumptions to be made on the association between290

images. The assumption made here is that each feature can only have one corresponding match,291

which reduces the computational requirements that impact processing time, but limits the292

effectiveness, especially on repetitive structures. Despite this, the process remains fairly robust.293

To improve matching, this process is repeated twice, once for the original images and once for the294
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Table 2: Information and parameters required for energy modelling

Geometry and Zoning

Coordinates of footprint

Building height

Window coordinate locations

Number of storeys

Thermal Properties
Thermal transmittance of wall, floor, roof

and window

Solar heat gain coefficient of windows

Outdoor air filtration

Metereological conditions Weather data

Internal loads and scheduling
Intensities of occupancy, lighting and

equipment

Schedules of occupancy, lighting and
equipment

Building service systems

masked images. The original images contain many more features within an image that can be295

used to infer context in the scene, including objects such as trees and cars that increase the total296

number of matches to improve the quality of image and feature referencing. However, since the297

intended output of the reconstruction is just the building, applying the process to the masked298

images generates a secondary representation of the scene. An alignment of the mask-based scene299

with the full feature reconstruction, in conjunction with the predefined poses acts as a corrective300

transformation that minimises potential errors and inaccuracies in, e.g. the location of the van,301

and the lesser contextual information in the masked images.302

With the aligned and matched features, a reconstruction of the 3-D model can be performed303

by creating a surface mesh by connecting features. The generated mesh is automatically post-304

processed to remove artefacts and reduce regions with a large number of nodes. Following this, a305

texture map is created, which essentially projects the images onto the reconstructed 3-D model.306

Applying the texturing process with both the masked images and the label maps provides two307

representations of the house: one with photographic detail, and the other with a semantic label308

localised in 3-D space. In the former case, this can be used for visualisation, and checking the309

quality of a reconstruction, while the projected labels allow for the extraction and measurement310

of geometry of the building.311

2.5 Geometry Extraction and Energy Modelling312

To scale up the (partial) automation of building energy models requires condensing and formatting313

of building properties needed to simulate consumption over a defined period of time. In this314

section, the individual considerations of the building model are described and processes to extract315

them from drive-by imaging, or otherwise, are detailed.316
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2.5.1 Geometry Extraction and Measurement317

Building a process to automate the extraction of geometry used to build energy models requires318

some preparation of the 3-D models generated in the pipeline.319

rectify  
mesh

measure and 
zone

abstract  
geometry

reorient

Figure 5: Illustration of pipeline for building
geometric representation of building from a la-
belled reconstructed mesh, showing the process
of rectifying a mesh to orient with the yz-plane;
measuring the facade with bounding boxes and
zoning based on storeys; abstracting the facade
to a 3-D geometry; and transforming the build-
ing to its original orientation.

Due to the automated nature of the framework,320

the mesh generated during 3-D reconstruction321

may contain artefacts or low quality regions.322

A preprocessing step to remove low-quality323

features is performed by identifying natural324

clusters in the 3-D model: the DBSCAN al-325

gorithm identifies distinct spatial regions based326

on areas with dense detail (Ester et al., 1996);327

by virtue of the semantic segmentation and328

masking, largest distinct cluster is considered329

to represent the building, and the rest is dis-330

carded.331

The orientation of the mesh is transformed to332

best align with the unit axes, such that the333

front facade aligns with the yz-plane. Bound-334

ing boxes are fitted to the features on the335

facade, such as the wall and each disconnected336

window, based on the projected labels. These337

bounding boxes are used to generate the meas-338

ured geometry used in the building energy339

models. The geometry is separated into zones340

based on the number of storeys, which is in-341

ferred from the orientation of windows. The generated geometric representation is retransformed342

to the mesh’s original orientation. Figure 5 illustrates the geometry extraction and measurement343

component of the framework.344

2.5.2 Building Energy Modelling345

The culmination of the building information extracted from drive-by images is to construct a346

model from which energy consumption, and therefore performance, can be effectively simulated.347

In this work, EnergyPlus, an industry-standard whole building energy simulation program, is348

used to estimate energy consumption given the inputs from the framework. These inputs are349

defined in an intermediary data format, generated from the information described in Table 2.350

This approach allows for the modelling of each building independently, providing energy con-351

sumption information at a high level of granularity. The core aspects of the building that are352

identified as important for the simulation are the geometry and zoning; the thermal properties;353

and the internal loads and schedules. In the case of the former two, data obtained from drive-by354

captured data is used.355
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Geometry and Zoning Creating the physical representation of a building is, in essence, the356

extrusion of its footprint using the calculated geometry. Thermal zones can be inferred from357

the number of storeys, obtained by counting windows. The zones, representing a storey, are358

assumed to be of equal height, for simplicity in the generalisation of zones. The windows are359

represented as coordinated quadrilaterals on the facade, extracted from the minimum bounding360

rectangle for each window on the 3-D reconstructed mesh. For non-visible faces of the building,361

the window-to-wall ratio is instead encoded: equal to that of the measured facade on the opposite362

face; and a low number, e.g. 10%, for side faces. Symmetry of the window-to-wall ratio and363

a low non-zero number for side faces were used in the absence of directly observed data, as364

reasonably considered assumptions of the average construction of a residential building. A visual365

representation of the process is shown in Figure 5.366

Thermal Properties To infer the thermal properties of the building, a set of age-based367

typologies for GB, developed by BRE, were used to infer the u-values of different features.368

The TABULA age-cohorts, which were used in the age detection component of the proposed369

framework, contain statistical assumptions of u-values for different properties, including walls370

and windows. The estimates given by the age detection model were used to generate estimates371

for the thermal transmittance and solar heat gain coefficient to be input in the energy model.372

Internal Loads and Scheduling Due to the lack of observable information on the internal373

properties of each building, a uniform assumption was made for all simulations. To keep these374

assumptions as close to those used in EPCs as possible, the heating schedules were sourced from375

SAP 2012 guidelines: 9 hours on week days and 16 hours on weekends (BRE, 2012); schedules376

were also modelled to approximately represent reported diurnal patterns in energy usage (Few377

et al., 2022). Lighting and electrical equipment, and occupancy scheduling, were referenced from378

literature and industry guidelines (Baden-Powell et al., 2011; BRE, 2012).379

2.5.3 Simulating Energy Consumption380

In addition to the systems defined, associated weather data was obtained from International381

Weather for Energy Calculations (IWE, 2001). Based on the extracted geometry and generated382

model, energy consumption based on space heating, lighting and equipment is simulated using383

EnergyPlus giving an estimation of annual usage in kWh/m2.384

3 Related Work385

Data driven solutions to categorising and quantifying the built environment, particularly energy386

consumption, are numerous and long-standing (Foucquier et al., 2013). Much of the research387

has focussed on understanding material stocks and predicting energy performance at large scales388

(Arbabi et al., 2021; Wei et al., 2018). To this end, building automated energy models from389

building data has been researched, for example in Chen et al. (2017) and Wate and Coors (2015).390

In Chen et al. (2017), the authors develop scenarios for retrofit at city-scale, using building data.391

3-D data models have also been used to simulate energy usage (Wate and Coors, 2015).392
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Detection of facade features using machine learning and computer vision has become a popular393

topic in the last few years (Chen et al., 2017). Tailor-made facade segmentation solutions, such394

as in Liu et al. (2017) and Dai et al. (2021) report high accuracy but are limited in that they395

are applied predominantly to rectified images, i.e. those that have had lens distortion features396

removed, similar to the format used in the age detection component of the framework. Due to397

a lack of code availability, and specific requirements for the format of images, neither solution398

was used in this work. Other features that have been identified from street-level images include399

building age (Zeppelzauer et al., 2018), and heating energy demand (Despotovic et al., 2019).400

Another component of the proposed framework relies on the projection of features to 3-D for401

the extraction of geometry. Identifying properties of buildings using existing sources such402

as Google Street View (Anguelov et al., 2010) has been applied to improving understanding403

of the urban environment (Hara et al., 2013; Campbell et al., 2019). Feature detection and404

mapping from Google Street View has been used to estimate building heights and improve facade405

understanding (Yuan and Cheriyadat, 2016). One of the main limitations with Google Street406

View data, however, is the spatial and temporal resolution at which it is available, meaning it407

can be difficult to reconstruct high quality 3-D geometries.408

Aerial remote sensing is has also been used in urban quantification: datasets such as UKBuildings409

utilise LiDAR to estimate building heights (Verisk, 2022); Bayomi et al. (2021) use thermography410

to calibrate building envelopes; and remote sensing has been used to develop material stock411

models (Lanau et al., 2019). Stock models of buildings, such as in London, have been developed412

to build representations of cities, utilising data sources including aerial LiDAR (Steadman et al.,413

2020).414

4 Case Study: Doncaster, UK415

The framework as outlined was applied to houses in a residential neighbourhood in Doncaster,416

UK. Data from 53 council-owned social houses were selected for the case study, based on available417

information including addresses. Publicly available energy performance certificates (EPC) were418

obtained for each of the properties and filtered for the most up-to-date version. The framework419

was applied to each house and the estimated features of the building, including height and energy420

consumption, are compared against existing data sets.421

4.1 Existing Data422

The three main datasets used to compare and validate the outputs of the framework are OS423

MasterMap, Verisk UKBuildings and EPC reports. In the case of the former two datasets,424

properties such as the building footprint, building height and building age are available, with425

varying degrees of quality and confidence. In EPC reports, predictions of the energy consumption,426

alongside features used in the inputs of the SAP modelling are provided, including dwelling427

features such as heating systems, room space, and assumed insulation.428

While polygons from OS MasterMap were used to localise the data, all other available properties429

are kept separate. In practice, one might combine these sources of available data to gain greater430
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Figure 6: Comparison of predicted energy consumption by the MARVel-based framework and
EPCs. (a) the distribution of predicted energy consumption from SAP-based EPCs and from the
proposed framework. The lower plot shows the distribution of “potential” energy consumption
based on recommendations provided in the EPC reports. (b) the energy consumption predictions
from each source for each property in the case study.

representation of a building, but this is beyond the scope of the paper.431

4.2 Validation432

The predicted annual energy consumption in EPC reports is provided in kWh/m2, which is433

used to generate ratings. Using the energy modelling component of the framework, annual434

energy consumption, in kWh/m2, can be simulated. In these models, simulation takes less than435

a minute on a mid-tier laptop.436

Figure 6 shows the predicted energy consumption by each method. In Figure 6(a), the distribution437

of energy consumption predictions over the sample houses is shown, highlighting the similarities438

in the overall values predicted across the houses estimated. The bottom plot indicates potential439

energy consumption provided in the EPC based on retrofit recommendations, to give a visual440

reference for the potential range of energy consumption values. In Figure 6(b), the energy441

consumption by each method for each building is shown, for direct comparison of estimation.442

From Figure 6(a), there is demonstrable agreement in the estimations for the majority of443

houses, with the framework-based estimation tending towards slightly lower estimations of444

energy consumption, on average. This is corroborated in the scatter plot, with most properties445

predicted as equal or slightly lower energy consumption with the framework. In some cases,446

however, there is a larger difference between the predictions, either with the EPC reporting447

higher values for energy consumption, or vice versa. In such cases, these can largely be attributed448

to the assumptions made both in the generation of the energy model using the drive-by data,449

which considers all internal systems and scheduling to be uniform across all houses; and in450

the assumptions made by the EPC provider. For example, for one property, the EPC-based451

energy consumption has been predicted significantly higher than the framework-based approach.452

Looking at the report features, the EPC highlights issues with poor efficiency from windows,453
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walls and the water heating system, the latter of which forms the most significant aspect of454

the recommendation to reduce energy consumption. On the other hand, the framework-based455

approach has assumed an average internal condition due to the lack of other data made available456

to it, and assumed thermal properties based on statistical archetypes of the building, characterised457

by its predicted age.458

−2 −1 0 1 2
Difference in Estimated Facade Height

Pr
op

or
ti
on

Figure 7: Histogram showing the proportion
of differences between the facade predicted in
the framework and the value reported in OS
MasterMap for the buildings in the case study.
When the difference is greater than zero, this
indicates the framework height is greater than
the OS value. The mean difference is 0.245 m
highlighted by the vertical line. A Gaussian
curve fitted to the mean and standard deviation
is overlaid.

To validate the geometry extracted from the459

3-D reconstructed models, the difference in460

calculated height with data available from a461

3rd party dataset for each house is shown in462

Figure 7. The relative height-to-the-eaves, re-463

ported as “RelH2” in OS MasterMap Build-464

ing Height Attribute (OS, 2022), is used as465

a benchmark, as the building heights are not466

reported in the EPC data. Figure 7 shows a467

general agreement between the two estimates468

of facade height, with a mean difference of469

0.245 m.470

The case study conducted has demonstrated471

the feasibility of street-level drive by capture,472

in that it has the capability to provide estim-473

ates that are largely in agreement with those474

reported by EPCs, without the need for entry475

to the property for direct inspection. Factor-476

ing in the degree of assumptions also made in477

EPCs on aspects such as insulation thickness,478

the drive-by approach has viability, even with479

the approximations of interior state required.480

5 Limitations, Modularity and Extensibility481

The framework proposed and outlined in this paper is designed to perform large-scale generation482

of digital representations of buildings, with the end-goal of the framework to measure energy483

consumption. There are a number of limitations with each component of the framework, as in484

most data-driven approaches, including the requirements for large scale deployment and the485

limited availability of high quality ground truth data for validation.486

These are discussed in turn in the following subsections. However, the modularity of the487

framework allows for clear adaptation and extension to both overcome some of the identified488

limitations and facilitates application to wider research problems in the urban environment.489
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5.1 Framework Design490

Data Collection and Localisation A source of uncertainty is the localisation of the sensing491

vehicle, which can be located to within 0.1 m, but in practice may be less accurate. Furthermore,492

the difference in projection of location used between different sources of data, and the conversion493

between, is also a potential source of error or inaccuracy. While the GNSS/IMU unit in the van494

measures the global position in longitude and latitude, with units in degrees, building identifiers,495

such as OS TOIDs, as well as the measurement of structures, are made in metres. The conversion496

from longitude and latitude to easting and northing used by Ordnance Survey has an inaccuracy497

up to 1 m, and this conversion is only available in third-party GIS softwares.498

The availability of other sources of data is limited, even for nationwide datasets. For example,499

UKBuildings only has building age for 71% of the houses in the neighbourhood from which the500

case study buildings were taken, and there is no clear way to validate the accuracy of these501

values.502

It may also be possible to expand on the information provided from drive-by data collection503

by including additional data modalities, such as thermal and LiDAR. Greater insight and504

reliability of the structure of the buildings that these modalities might add will lead to more505

confident estimations of the energy consumption, as well as providing additional inferences, such506

as insulation thickness or fault detection by assessing thermal properties and more accurate507

geometric structure using the LiDAR point clouds.508

Independent of uncertainty, another limitation is the sheer volume of data obtained by drive-by509

capture. In contrast to parameter based datasets, where each house is represented as a set510

of variables, typically text- or number-based, the drive-by process of capturing images and511

geolocation information creates a huge amount of data that needs to be processed and stored.512

While this paper outlines the framework as a proof-of-concept, the quantity of computational513

storage and other resources required need to be considered before deploying this type of image-514

based solution at a city, regional or national scale. In terms of raw image data, 1000 images takes515

up approximately 1 GB space. At a capture rate of 7.5 FPS, the total storage for a 75-minute516

drive is around 150 GB.517

Feature Extraction Other sources of uncertainty in the framework include the trained518

machine learning models used to identify age and component features. In the latter case, most519

feature pixels are classified with an accuracy well over 95%; an exception to this are roofs, which520

are classified with accuracy 81% – the source of uncertainty here may be in the varied inclusion521

of eaves and gutters in the training data. For the age detection part of the framework, the522

model is only accurate approximately 70% of the time. While this is in line with state-of-the-art523

models for detection, it will likely have an impact on the results.524

Despite the relatively high levels of accuracy in the models used in this work, they are not525

necessarily the best performing of all available models. As mentioned previously, bespoke facade526

detection methods might result in higher quality label data, and as research progresses, the527

state-of-the-art will improve. As the framework is designed to be modular in terms of defined528
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inputs and outputs, replacing components with new methods should be simple. However, with529

the addition of multiple modalities, such as thermal data, joint representation learning could530

further extend the capabilities of feature extraction: in the identification and localisation of531

facade features; or providing additional insight into the thermal properties of the building532

(Theodosiou et al., 2021).533

Geometry and Zoning When creating the geometric representation of the building relies534

on a number of simplified assumptions. Thermal zoning is assumed by storey and, due to the535

lack of consistent reconstruction of roofs, all buildings are assumed to have a flat roof even if536

the contrary is true. As shown in the results, neither of these assumptions have drastic effects537

on estimated energy consumption, compared to the values reported in EPCs. Incorporating538

additional knowledge, for example structural archetypes, to better generalise the assumptions539

may yield more representative estimations of energy consumption.540

The 3-D reconstruction component of the framework is based on multiview stereoscopy, but541

using different approaches to photogrammetry may yield more accurate measurements. LiDAR,542

for example, measures the 3-D scene directly, and aerial point clouds have been used for urban543

quantification (Steadman et al., 2020). More contemporary methods in 3-D scene representation544

include neural radiance fields (NeRF), which utilise generative machine learning models to545

generalise views and poses (Mildenhall et al., 2020). NeRFs have, for example, been used to546

represent cities at different spatial scales (Xiangli et al., 2022).547

Thermal Properties Detection of materials from visual images alone is difficult due to issues548

such as paint and texture, so the framework uses an age detection model and statistical values549

for the thermal transmittance for use in the energy modelling component. However, combined550

information from data sources and drive-by data might be able to infer u-values with greater551

resolution. For example, whether a facade wall is solid brick, or a cavity wall, filled or unfilled,552

can be used to estimate u-values with greater degree of accuracy using industry documentation,553

such as reduced data SAP (rdSAP) (BRE, 2012). How to infer such properties with drive-by554

data is an open question that requires further research.555

Internal Loads and Scheduling As highlighted in the evaluation of the case study, it is556

difficult to quantify the internal loads and scheduling used for energy modelling assumptions557

from drive-by capture. There are many studies which cover modelling occupant behaviour that558

can be used to provide “best guesses” (Carlucci et al., 2020; Yang et al., 2021). Focusing on559

this is beyond the scope of the paper, but introducing seasonality in the internal loads and560

scheduling, based on trends identified from qualitative research, or from statistical models based561

on smart meter data could introduce a more realistic model of occupant behaviour (Few et al.,562

2022).563

5.2 Validation and Verification564

On validation of the approach, there is limited data, especially on the interior of the property,565

that is consistently reliable and available. EPCs, UKBuildings and OS Mastermap all use similar566
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data driven approaches, or rely on flawed assessment as in the case of EPCs, and due to this567

there is no robust information for verifying data (Hardy and Glew, 2019).568

Validation of the geometry measured with the framework is limited due to the availability of569

consistent and reliable data. In the case study, building height calculated in the framework was570

compared with OS data. However, for every house in the case study, the data is considered571

unverified by Ordnance Survey. In fact, this is the case for almost all houses in the area local to572

the case study. For example, of over 382, 000 houses analysed in South Yorkshire, UK, 99.65%573

were reported as unverified in the OS MasterMap Building Height Attribute dataset (OS, 2022).574

5.3 Scalability575

Consumer advice sites estimate that conducting an EPC survey can take between 45 and 60576

minutes per house (ReallyMoving.com, 2022). With drive-by capture, up to 30 houses can577

be imaged per minute, based on the assumptions made in this paper. While the current578

implementation of the framework was built to model and simulate energy consumption for a579

single house at a time, it is possible to expand the scale of the framework by incorporating parallel580

computing, to reconstruct and simulate energy for multiple houses simultaneously. Similarly,581

additional efficiencies might be found in preprocessing of the image data. Captured data contains582

multiple houses and could be batch processed, including with labelling and masking.583

5.4 Beyond Energy Consumption584

While the focus in this paper has been on using drive-by capture data to model energy con-585

sumption, there are many other uses for the data and the processes discussed. Understanding586

material inventories and dimensions can help build up a picture of material stock (Lanau et al.,587

2019). An extension of the proposed framework, with statistical assumptions based on factors588

such as age and build factor, would be to build a database to help quantify material stock for a589

specific region (Arbabi et al., 2021).590

Similar to understanding material intensity in a region, knowledge of the dimensions and591

retrofit needs of a building can yield solutions to facilitate efficient manufacturing for retrofit592

interventions, e.g. for mass-produced panelised systems (Orlowski, 2020). Quantifying housing593

stocks at a neighbourhood, town or city level would allow for efficient manufacturing, resulting594

in an economy of scale benefit (Andronie et al., 2021).595

6 Conclusions596

This paper has outlined a multi-aspect, modular framework spanning from the capture and597

localisation of drive-by image data to reliable, scalable energy consumption prediction of598

individual residential buildings. The resulting predictions produce similar estimates for energy599

consumption as to EPCs. Each component of the framework is discussed and critically appraised600

both in terms of its individual performance and its contribution to the wider output of the601

framework. Limitations and extensions to the framework are discussed and more general aspects602

of the process are explored.603
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The current implementation of the feature extraction and measurement aspect of the pipeline604

is designed to measure geometry and simulate energy consumption for a single property. This605

design allows for parallel execution when scaling up to neighbourhood- or city-level. While606

reliant on the same input data set of drive-by capture, each reconstruction is independent,607

computational requirements notwithstanding. As opposed to reconstructing and measuring608

whole streets, the highly parallelisable approach in our methodology is much better designed for609

future scaling.610

In practice, a hybrid method is likely needed, one that takes into account data from multiple611

sources and scales, with a view to confidence in data, its quality and any uncertainty in the612

process. The modular aspect of the framework presented in this framework offers some facilitation613

for improvements as methods improve, and for extensions into new avenues.614
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