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Current infrastructure networks must be climate
resilient to continue meeting service demand into the
next decades with climate change rapidly pushing
infrastructure assets towards or beyond their initial
design envelope. At system level, this corresponds
to the ability to deliver services when parts of
the infrastructure become isolated following local
asset failures. Local shielding strategies are typically
formulated using abstract network metrics or global
optimization methods. The former are agnostic to the
specificity of infrastructure systems, while the latter
tend to be hardly scalable for large infrastructure
networks. Here, we develop an optimal limited-
resource allocation strategy to increase network
resilience, combining the input sparsity of abstract
network metrics with transparency of optimization
methods. We focus on transport networks and
maximizing the expected throughput of services.
We consider upgrading costs as proportional to the
desired increase in failure load from climate shocks.
We benchmark our method by applying it to the UK
freight railway considering shocks induced by an end-
of-century RCP8.5 climate change scenario. A closed-
form solution naturally emerges for the ranking of
the network assets that allows for optimal distribution
of limited asset reinforcement investments. We show
that this attains better resilience improvements
compared to existing heuristic global optimization
methods.

2025 The Authors. Published by the Royal Society under the terms of the
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1. Introduction
As a changing climate poses an increasing challenge for all infrastructure sectors [1], early climate
change adaptation investments have been identified as economically efficient in the long term [2].
The Intergovernmental Panel on Climate Change sixth assessment report defines climate change
adaptation as acts that moderate harm or take advantage of beneficial opportunities. With mitigation
efforts stalling, adaptation is becoming increasingly more crucial in managing the effects of
climate change [3].

Recognizing the importance of high-quality infrastructure in economic growth and the risks
posed by climate change, national governments have started setting out long-term infrastructure
investment plans. As an example, the UK Government has committed to an annualized
investment of 1.1–1.3% of the GDP to deliver such infrastructure development plans over the next
30 years [4,5]. The US Bipartisan infrastructure plan proposes $400bn to repair road and bridge
infrastructures, where it is estimated that one mile in every five is in poor condition. Moreover,
it announced a $50bn investment to increase climate change resilience [6]. However, with limited
resources made available to develop and upgrade infrastructure systems, the challenge shifts
to how interventions should be prioritized and, consequently, resources should be allocated to
minimize future service disruptions [7].

Similar questions of limited resource allocation and resilience have been explored by
disciplinary work in network science and operation research. In the context of network science,
local metrics have been developed to measure the importance of each node or edge to the
structure of the overall system and the effect they may have on altering the dynamics playing
out over the system in terms of their contribution to system resilience and their susceptibility to
faults and failures. Among the various metrics studied in the literature, those related to centrality
and clustering are recognized as the most fundamental and frequently used local network metrics
[8]. Node degree is one of the most intuitive measures for centrality of an asset and its importance
[9]. Nodes with a higher degree, i.e. more connected edges, are structurally more crucial than
nodes with fewer attached edges. Removing a high-degree node could remove a substantial
proportion of edges in the network and is more likely to fragment the original network into
two or more disconnected subnetworks. The betweenness centralities are a broader family of
measures characterizing the importance of nodes or edges in allowing access between other
assets in a network [9]. Nodes and edges are considered in a central position if they fall within
the shortest path connecting many other node pairs [10]. Their betweenness centrality directly
indicates the magnitude of potential disruptions, and if they are to fail. (As both nodes and
edges can fail in infrastructure networks, we shall refer to either as assets, meaning lines,
junctions, etc.) High betweenness centrality of an asset could indicate a bottleneck between two
components or parts of an infrastructure network. Disruptions to such assets are more likely to
increase the distance between the unaffected assets, if not entirely disconnect them. In physical
infrastructure systems, prioritizing and protecting assets of a higher centrality can be used to
avoid failures that could cause larger-scale service disruptions. Clustering, meanwhile, describes
the local connectedness of assets in a wider community of nodes, originating in social network
studies as cliques, where common friends of a person tend to directly know one another as
well [11]. In the context of infrastructure systems, clustering for an asset reflects the likelihood
that its immediate neighbours will remain closely connected in the event of its failure [12].
These metrics are often developed with abstract networks in mind and rely solely on topological
information to quantify the importance of network assets. Isolated use of such metrics, however,
captures insufficient information with respect to a system’s unique dynamics and needs to be
modified with infrastructure-specific information when inferring components’ susceptibility to
failure when exposed to external shocks [13–16].

In the context of operation research, a mathematical or computational formulation abstracts
the infrastructure system under study and its operation to be then considered within objective
functions related to the system’s health, safety, functionality, reliability or resilience. With the
resource input into the system acting as one of the constraints, the optimization process then seeks
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to minimize or maximize the desired function over a feasible set of solutions. These approaches
directly solve an explicit formulation of the problem, i.e. where/how to allocate a finite set of
resources. Objective functions formulated in such cases cover various aspects of infrastructure
operations at different levels and are often formulated as functions of the quality of service
provided [17,18]. The nature of the system under study is a leading factor in choosing which
function to use. Each infrastructure sector has its own performance measures to quantify the
service provided, e.g. minimization of the passenger waiting time for public transport systems
[19–21]. Optimization models are developed to effectively allocate limited budgets and resources
to maintain and improve the overall condition of the network. From the perspective of proactive
or reactive actions, pre-disaster resource allocation strategies for resilience look at allocating
resources to reinforce the infrastructure system so that the onset effect of disruptive events can be
minimized [22–26].

It is clear that topological measures on their own are not universally sufficient for addressing
resource allocation problems across infrastructure systems. Objective functions tailored to specific
infrastructure systems, which combine topological and functional importance of network assets,
are also difficult to generalize. What is needed is a clear mechanism or framework that
explains how local asset-level topological metrics are related to the network-level resilience. In
this work, we present a generalized analytical solution for resource allocation that, inspired
by a linear programming approach, produces a network metric, which naturally ranks both
nodes and edges of a flow-centric network based on their contribution to the resilience of the
whole system. While the method is easily generalizable, we concentrate on transport system
weather resilience and offer a case study on the UK rail network considering the effect of
increasing temperatures, as derived from an end-of-century RCP8.5 climate change scenario.
We show how our method, which can be applied iteratively for greater accuracy, surpasses
the performance of a particle swarm optimization (PSO) while reducing the computational
burden.

The rest of this paper is structured as follows: in §2 we offer the formulation of the limited
resource allocation problem; we then present an exact analytic solution for a toy model network
in §3, leading to the more general formulation. The result, then applied and benchmarked on the
UK rail network, is described in §4, allowing us to discuss our findings and offer our conclusions
in §§5 and 6.

2. A generalized mobility infrastructure network model
We model the infrastructure system as a multilayer network, consisting of a service layer and
one or more asset layers. We consider the ultimate purpose of an infrastructure system to be
the provision of a service or set of services. It follows that resilience is defined as the ability
to maintain the delivery of the services when the system is subject to external shocks [27].
In the context of infrastructure systems/services subject to climate change-related hazards, the
successful delivery of a unit service can sometimes rely on multiple interdependent infrastructure
systems. Components in each of these systems can be affected by different types of climatic
hazards. By separating the service and asset layers, we quantify the scale of disruptions to services
as assets fail. With such a separation, it is also possible to incorporate multiple asset layers, which
are exposed to different climate hazards, into the assessment.

While amenable to multiple asset layers, our formulation is presented with just one such layer
and one service layer, indicated by subscripts α and φ, respectively. Hence, for the asset layer,
assets can be thought of as a graph Gα = {Vα , Eα}, where Vα and Eα indicate the set of nodes and
edges, respectively. The framework does not need to differentiate node assets and edge assets
rigidly; A indicates the set of assets in layer α, with elements Ai, i= 1, 2, . . . , |Vα | + |Eα |, with
| · | indicating the cardinality of a set. The equivalent definitions for the flow layer φ are omitted
for brevity. We consider a multilayer network with an asset layer, Gα = {Vα , Eα}, and an origin–
destination (OD) layer Gφ = {Vφ , Eφ}, as services. The asset layer represents the network of the
physical assets in the infrastructure system, such as stations and railway lines. The flow layer
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Figure 1. A simple network illustration for the bi-layer structure (A) and a schematic resilience curve with loss of service
highlighted (B)—adapted from [28].

represents the service provided by the infrastructure system, such as transporting passengers
and commodities.

The node set of the OD layer is a subset of the asset layer, Vφ ∈ Vα , including the origin and
destination nodes and excluding some intermediate connection nodes. The edge sets of the two
layers are two separate sets, Eφ /∈ Eα . Each OD pair is assumed to have one specific route in the
asset layer in our network model. Moving commodities from an origin node to a destination node
requires all track segments along the route to be in working condition. Hence, an OD pair refers
to an edge in the flow layer and an OD path refers to an ordered list of edges in the asset layer that
the OD pair relies on to deliver the OD flow.

This dependent relationship between the asset layer and the flow layer is captured by a link-
route incidence matrix H. The number of rows in H equals the number of edges in the asset layer
and the number of columns equals the number of OD pairs in the flow layer. Therefore, H is of
size |Eα | × |Eφ | and Hi,j = 1 denotes that edge ei ∈ Eα belongs to the OD path of OD pair ODj ∈ Eφ ;
otherwise Hi,j = 0. In the simple network illustrated in figure 1A, OD flow F1 relies on edges e1,
e2 and e3 in the asset layer, while OD flow F2 relies on edges e3 and e4. This corresponds to a
link-route incidence matrix for the simple network:

H=

F1 F2⎡
⎢⎢⎣

⎤
⎥⎥⎦

e1 1 0
e2 1 0
e3 1 1
e4 0 1

.

The resilience of infrastructure systems often spans from robustness, the ability to resist and
absorb external shocks, to recoverability, the ability to restore services quickly [29,30]. When
plotted against time, the loss and gradual recovery of services produce a triangular shape in the
time history of the system key performance parameters, against which its resilience is considered
(e.g. [31]). The area of such a triangle, which is also the cumulative loss of service, when the
performance considered, is the overall service provision, and primarily depends on the scale of
the initial disruption (drop in services, measured along the vertical axis) and time taken to restore
full functionality, figure 1B.

Here, we consider minimizing the initial disruption, which ultimately leads to a minimized
cumulative service loss. Therefore, the objective function for the optimization problem can be
minimizing the initial loss of service, Q(t= 0), or maximizing the amount of remaining service, 1−
Q(t= 0), where t= 0 refers to the time a disruptive event occurs. For a given climatic condition,
ω, each edge asset i is given a local load variable in the set ω= {ωi, . . . ωα}, where i= 1, 2, . . . |Eα |.

A fragility function, here taken in the form of the cumulative density function of the standard
normal distribution, maps the local weather parameter, ωi, to the probability of failure for asset
ei. This captures the non-deterministic relation between an edge exceeding its design load, μi,
and failing. Safety factors, ageing and maintenance activities contribute to the variance of such
a distribution; however, they are difficult to quantify [32]. If the sample size is large enough,
the empirical distribution of the true failure load can be described by a normally distributed
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random variable, Ω ∼N (μi, σi), where σi expresses the average difference between the designed
and actual failure loads. For a given external weather parameter, ωi, the probability of failure for
edge ei equals the probability of edges ei actual failure load being equal or smaller than ωi, or
pi = P(Ω ≤ωi). Therefore, we take the probability of failure for edge ei under external weather
parameter ωi to be

pi = P(Ω ≤ωi)=
1
2

[
1+ erf

(
ωi − μi

σi
√

2

)]
, (2.1)

where pi ∈ [0, 1] is the probability of failure for edge ei; ωi could be any weather parameter, e.g.
temperature, wind speed or precipitation, and μi and σi are the shape-control parameters for
the fragility function for asset ei and are also associated with the asset’s condition. This choice
provides weather-dependent failure scenarios based on the RCP8.5 climate models, after the work
in [28]. Note that, intensity, time and spatial extent of extreme heat events are also considered.
To develop the resource allocation strategy, the independent variable ωi is then sampled from
RCP8.5 climate models, considering both average and worst-case day scenarios. This is expanded
on further in the case study. Similarly, the design threshold used in the fragility function is related
directly and taken from existing studies of heat load effects, based on the work of [33].

The probabilities of individual asset failure can be mapped to the probabilities of OD flow
interruption. An OD service path can only be assumed to run successfully when all of its assets
function undisrupted. The probability of a service successfully running for an OD path ODj equals
the combined probability of all of its dependent edges not failing. Therefore, the probability of
success for OD path Fj is

p(Fj)=
∏

i

(1−Hi,jpi). (2.2)

Subsequently, the expected delivery, Ej, for OD pair ODj, can be obtained by multiplying the
demand along the OD path for flow Fj with the path’s probability of not failing:

Ej = Fj
∏

i

(1−Hi,jpi). (2.3)

The expected delivery across the whole system is therefore sum of the expected deliveries for all
of the OD pairs:

E=
∑

j

Ej

=
∑

j

Fj
∏

i

(1−Hi,jpi)

=
∑

j

Fj
∏

i

(
1−Hi,j

1
2

(
1+ erf

(
ωi − μi

σi
√

2

)))
. (2.4)

(a) The resource allocation problem
We shall now find the optimal resource allocation in terms of upgrading efforts to be distributed
between infrastructure assets to minimize the system’s service disruptions under plausible future
extreme weather events.

We assume that edges in the asset layer can be upgraded to a higher design load μ∗i from its
original design load μi by �μi:

μ∗i =μi +�μi, (2.5)

so that failure probability will be reduced when exposed to the same weather parameter:

p∗i =
1
2

(
1+ erf

(
ωi − μ∗i
σi
√

2

))
. (2.6)

The vector �μ contains the amount of upgrade �μi for all of the asset:

�μ= {�μi, . . .}, i= 1, 2, . . . |Eα |. (2.7)
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Upon such an upgrade, when the system is subject to the same external weather parameters ω,
the expected delivery should now be increased from E to E∗. This yields an optimization for an
initial loss of services (iLOS) that can be expressed as

min
�μ

iLOS=min
�μ

∑
j

Fj − E∗

=min
�μ

∑
j

Fj

(
1−

∏
i

(
1−Hi,j

1
2

(
1+ erf

(
ωi − (μi +�μi)

σi
√

2

))))
, (2.8)

subject to ∑
i=1

ci�μi =C, (2.9)

�μi ≥ 0, for all i (2.10)

and �μi ≤�μub
i , for all i. (2.11)

Here, the sum of all OD flows,
∑

j Fj, is the amount of flows delivered in the network without
any asset failures and is a constant given the system’s typical overall demand. Such an upgrade
would come at a cost

∑
i=1 ci�μi, where ci denotes the unit cost to increase the design load of

edge ei. The values of ci could differ from edge to edge depending on asset conditions. The cost
of upgrade edge ei by �μi is simply the product of the unit cost and the amount of increase in the
design load, ci�μi.

We consider a finite budget for infrastructure asset upgrades, C, made available to the whole
system, which can be used for any subsets of assets. The increase in design load is also subject
to physical and practical limits [34]. We constrain �μi to an upper bound �μub

i to exclude trivial
solutions which are physically inconsistent, and to a zero lower bound assuming that the assets’
load capacity can only be increased diminished in their load capacity to invest this elsewhere in
the network. Therefore,

3. Low-dimensional approach
We shall now concentrate on a three-node, two-edge network and solve the optimal resource
allocation model explicitly. The toy model used is shown in figure 2A. We aim at an analytic
solution that expresses the optimal resource allocation as a function of the key input variables,
that is, the local weather parameters (ω), the assets condition (μ), the unit cost (c), the pairwise
service demands (F) and the link-route incidence matrix (H).

The asset layer, figure 2A, has nine nodes and two edges. The service layer comprises three OD
pairs. The current design loads are denoted as μ1 and μ2 for edge e1 and e2. The fragility function
for each edge is

pi(ω)= 1
2

(
1+ erf

(
ω − μi

σi
√

2

))
i ∈ {1, 2}. (3.1)

The flow of services between OD pairs in the service layer is denoted as F1, F2 and F3. The
delivery of F1 from n1 to n2 depends solely on the functioning of e1, and therefore the first column
of the route-link incidence matrix, H, is [1, 0]�. The delivery of F2 from n1 to n3 depends on the
functioning of e1 and e2 and therefore the second column of H is [1, 1]�. Similarly, the third column
is [0, 1]�. The route-link incidence matrix is therefore

H=
[

1 1 0
0 1 1

]
.

In this simple test model, j ∈ {1, 2, 3} as there are three OD flows and i ∈ {1, 2}, as there are two
edges in the asset layer. The total expected delivery can be calculated as the sum of the OD flows
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Figure 2. The network structure of the test model. The flow layer has three OD pairs. The asset layer is a network of three nodes
and three edges.

F1, F2 and F3 multiplied by their corresponding OD path’s probability of succeeding. Therefore,
expanding equation (2.4), we get

E=
∑

j

Fj
∏

i

(1−Hi,jpi) (3.2)

= F1(1−H1,1 p1)(1−H2,1 p2)+ F2(1−H1,2 p1)(1−H2,2 p2)+ F3(1−H1,3 p1)(1−H2,3 p2).
(3.3)

Considering the actual elements of H for this network, this becomes

E= F1(1− p1)+ F2(1− p1)(1− p2)+ F3(1− p2)

= (F1 + F2 + F3)− p1(F1 + F2)− p2(F2 + F3)+ p1p2F2. (3.4)

We assume that the edges in the asset layer can be upgraded to higher design loads by an
increment of �μ= {�μ1, �μ2}, resulting in reduced probabilities of failure, p∗i as defined in
equation (2.6) for i= {1, 2}. The expected delivery with the upgrade, E∗, is then

E∗ = (F1 + F2 + F3)− p∗1(F1 + F2)− p∗2(F2 + F3)+ p∗1p∗2F2. (3.5)

The expected initial loss of service (iLOS), figure 1B, at the onset of the disruption without any
re-routing or repairing efforts, is

iLOS= (F1 + F2 + F3)− E∗

= p∗1(F1 + F2)+ p∗2(F2 + F3)− p∗1p∗2F2. (3.6)

In this case, the minimization problem in equation (2.8) can be expressed as

min
�μ

iLOS, (3.7)

subject to

c1�μ1 + c2�μ2 =C, �μ1 ≤�μub
1 , �μ2 ≤�μub

2 , �μ1 ≥ 0, �μ2 ≥ 0. (3.8)

We can write the marginal increments of iLOS in response to a change of design threshold from
equation (3.6) as

A�μ1 + B�μ2 +D�μ1�μ2, (3.9)

where

A= p′1(F1 + F2)− p2p′1F2, (3.10)

B= p′2(F2 + F3)− p1p′2F2 (3.11)

and D=−F2p′1p′2, (3.12)
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with, p′1, p′2 as the derivatives of the probabilities of failure for assets 1 and 2 with respect to
the design loads μ1 and μ2, respectively, to upgrade. Note that, the problem of minimizing
initial loss can equivalently be formulated as maximizing the return of the infrastructure upgrade
investment through maximizing the expected additional delivery, subject to the same constraints,
see electronic supplementary material, section S1. Rearranging equation (3.10) as A= p′1(F1 + (1−
p2)F2) provides a more tangible interpretation as it can now be seen as the rate of change of the
probability of failure, p′1, multiplied by the amount of flow that is dependent on the success of
edge e1.

(a) Linear programming approach
The Lagrangian for the optimization problem equation (3.7) is defined as

L(�μ1, �μ2, λ, θ1, θ2, ϕ1, ϕ2)=A�μ1 + B�μ2 +D�μ1�μ2 − λ(c1�μ1 + c2�μ2 −m(c1 + c2))

− θ1(�μ1 −�μub
1 + t2

1)− θ2(�μ2 −�μub
2 + t2

2)

− ϕ1(�μ1 − s2
1)− ϕ2(�μ2 − s2

2), (3.13)

where λ, θ1, θ2, ϕ1 and ϕ2 are the Lagrange multipliers and t2
1, t2

2, s2
1 and s2

2 are slack variables
that are introduced to convert the inequality constrains into equalities. The four inequality
constraints mean 24 = 16 cases to discuss. The solution, obtained by taking the gradient of
the Lagrangian with respect to each variable is found in each case and is and detailed in the
electronic supplementary material, section S2, while here only the solution of unconstrained case
is considered as the others present either unrealistic or trivial outcomes.

(i) Solution of the unconstrained optimization (none of the inequality constrains is active)

We consider (θ1 = 0, t2
1 > 0), (θ2 = 0, t2

2 > 0), (ϕ1 = 0, s2
1 > 0) and (ϕ2 = 0, s2

2 > 0). The solution can be
found by solving

⎧⎪⎪⎨
⎪⎪⎩

A+D�μ2 − λc1 = 0,

B+D�μ1 − λc2 = 0,

C− c1�μ1 − c2�μ2 = 0,

(3.14)

which returns

�μ1 = CD+ Ac2 − Bc1

2Dc1
and �μ2 = CD− Ac2 + Bc1

2Dc2
. (3.15)

Feasibility of the above solution need to be checked with if there exist t2
1 > 0, t2

2 > 0, s2
1 > 0 and

s2
2 > 0 that satisfy

∂L
∂θ1
= ∂L

∂θ2
= ∂L

∂ϕ1
= ∂L

∂ϕ2
= 0. (3.16)

If any of the gradients can not find a slack variable such that the gradient can be zero, the solution
from this case will be ruled unfeasible. This situation happens when the solution found in this
case turns out to be outside the feasible region defined by the constraints. When there are no
constraints considered, the solution calculated with equation (3.15) is the optimal solution. With
the presence of the equality and inequality constraints, it could turn out to be an unfeasible
solution.
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(b) Generalized approach
The understanding achieved through the low-dimensional approach can now be used to consider
the more general case. Rearranging equation (3.15) yields:

c1�μ1 − C
2
= c1c2

D

(
A
c1
− 1

2

(
A
c1
+ B

c2

))

and c2�μ2 − C
2
= c1c2

D

(
B
c2
− 1

2

(
A
c1
+ B

c2

))
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

It is easy to show that for a constant unit cost c1 = c2 = c, the optimal level of upgrade is related
to the relative value of A and B, �μ∝ |A− B|. Consider the generic edge ei and, without loss of
generality, assume i= 1 so to link the toy example to the following. From equation (3.17), in the
optimized resource allocation solution, the amount of more-than-average resource allocated to
edge e1 is a linear function of the difference between A/c1 and the average of (A/c1, B/c2). The
(F1 + (1− p2)F2) in A and the (F3 + (1− p1)F2) in B need to be generalized so that they can be
applied to problems with more than two edges. Consider the first edge ei=1, the direct sum of the
OD flows that use edge e1 is F1 =

∑
j H1,jFj.

Each of the Fj flows has to be scaled by the probability of failure to calculate the true proportion
of Fj that is expected to use edge ei=1 through

∏
k,k �=1

(1−Hk,jpk).

Similarly, A= p′1(F1 + (1− p2)F2) and B= p′2(F3 + (1− p1)F2) are, hence, generalized to

p′i
∑

j

Hi,jFj
∏

k,k �=i

(1−Hk,jpk). (3.18)

Generalized A/c1 and B/c2 are therefore

p′i
ci

∑
j

Hi,jFj
∏

k,k �=i

(1−Hk,jpk). (3.19)

If instead we consider the term for edge ei from equation (2.3) and extend it to all expected OD
flows Ej, the total expected delivery across the network E cab be obtained as

E=
∑

j

Ej =
∑

j

⎡
⎣(1−Hi,jpi)Fj

∏
k,k �=i

(1−Hk,jpk)

⎤
⎦

=
∑

j

⎡
⎣Fj

∏
k,k �=i

(1−Hk,jpk)− pi
∑

j

Hi,jFj
∏

k,k �=i

(1−Hk,jpk)

⎤
⎦ . (3.20)

Differentiating with respect to μi gives the ‘gradient’, i.e. the change rate of the total expected
flow for investing in edge ei:

∂E
∂μi
=− ∂pi

∂μi

∑
j

Hi,jFj
∏

k,k �=i

(1−Hk,jpk). (3.21)

Note that the right-hand side of equation (3.21) matches the generalized analytical solution
obtained in equation (3.19) except for the multiplicative term 1/ci. This means that the derivative
of the expected flow on an edge with respect to the upgrade that the edge receives is proportional
to the optimal amount of resources the edge can be allocated.
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The term ∂E/∂μi indicates the gradient of investing in edge ei. Assuming there is a sufficiently
small portion, �μi allocated to edge ei, the resulted change in the objective function �E can be
approximated as

�E=�μi
∂E
∂μi

. (3.22)

With the associated cost of upgrading edge ei by �μi being �μici, the true gradient of investing
in edge ei is

�E
�μici

=
�μi

∂E
∂μi

�μici
=−p′i

ci

∑
j

Hi,jFj
∏

k,k �=i

(1−Hk,jpk). (3.23)

A ranking of the assets can then be obtained based on the ability of the asset to contribute to
the expected network flow delivery for every unit of resources allocated to their upgrade.

(c) Ranking strategies
Network resource allocations can often be seen as ranking problems. The underlying assumption
is that components of high topological or functional importance, e.g. a vertex with many edges,
or an edge that is part of the shortest path of many node pairs, should be prioritized. Node
ranking metrics exist that are able to provide measures of individual node and edge importance,
offering good computational advantages. Network components of relatively high importance
enjoy proportionally large amounts of resources. In a ranking-based resource allocation the
amount of upgrade �μi for any edge ei is proportional to its calculated ranking score γi. Defining
χ as the proportionality constant, for any edge ei we get

�μi = χγi. (3.24)

To satisfy the first boundary condition equation (2.9), the total cost of upgrade for all edges needs
to equal the given budget, C: ∑

i

ci�μi =
∑

i

ciχγi =C. (3.25)

Rearranging equation (3.25) and substituting into equation (3.24), the resource allocation solution
can be found by calculating each �μi as

�μi = γi
C∑
i ciγi

. (3.26)

The resource allocation generated this way naturally satisfies the boundary conditions∑
ci�μi =C and �μi ≥ 0. The upper boundary constraint can be handled by resetting �μi to

�μub
i if �μi > �μub

i . This resetting leaves ci ∗ (�μi −�μub
i ) amount of resources unused, which

can be allocated by running the ranking-based resource allocation again, as in algorithm 1.
However, the ranking metrics available have not been engineered to improve resilience of

infrastructure network through local upgrading. Taking the gradient of the expected network
flow delivery with respect to the upgrades of the single assets allows us to overcome the
generality of the existing ranking metrics. In this way, assets will be ranked based on the
cost/benefit balance of investing in them. This is achieved by applying equation (3.21) to all edges.
We define this local gradient as the new ranking metric:

γi =
∂E
∂μi

for all i ∈ Eα , (3.27)

and we show next how this applies iteratively to a transport network upgrade problem. We define
this as the iterative resilience metric-based approach or algorithm (IRMA).

4. A case study on the UK railway network
To evaluate the performance of the proposed iterative approach, a system model for this core
freight network is constructed, consisting of two layers. The edges in the asset layer represent the
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Figure 3. The asset layer constructed for this study (purple) as embedded in all railway track lines across the country that
are managed by Network Rail (grey) (A). The original shape file is provided by Network Rail. The rankings of the edges to
upgrade broadly agree between the PSO and the IRMA (B). Greater agreement occurs when the resources are more scarce
while the abundance of resources makes ranking irrelevant. The box plot (C) shows the values attained by the objective
function minimized using the PSO algorithm and the proposed metric-based approach with different levels of investment
(�μeq ∈ [0.5, 1, 2, 4, 8]). The objective function is the expected initial service disruption in percentage of the normal service
level for a given weather profile.�μeq indicates the investment level.�μeq = 2 means the amount of investment equals
to that required to increase the design load for all assets in the network by 2◦C.

railway track lines, figure 3A. The asset layer consists of 65 nodes and 84 edges, which has been
constructed based on the maps and descriptions of the freight corridors in the Freight Network
Study [35].

The service layer is constructed using the freight train schedule data obtained from the open
data feed (openraildata.com, last accessed March 2022) by Network Rail. The constructed service
layer has 1623 OD pairs. Converting the station record to node paths in the asset layer, then to
edge paths, gives the link-route incidence matrix H.

As the downloaded dataset does not include information on the weight or volume of goods
transported, loaded and unloaded at each calling station, a scheduled run on a single day is
treated as a single unit of flow in the service layer. The total number of runs for each schedule
divided by the number of days in the schedule gives the average daily traffic profile. Adding
up the trips of all schedules, the simplified location records of which are identical, gives F, the
amount of flow between the OD pairs. While asset information is not available to inform realistic
costs, c, this is assumed to be proportional to the geographical length of the edges.

When directly applying the method to the freight network, instead of specifying the number
of iterations, k, a step size �μ(k) is specified. In each iteration, the algorithm tries to allocate �μ(k)
amount of resources between edges. The solution obtained will be checked, and where there is a
violation of the upper boundary constraint, the value of �μi will be reset to �μub

i . The unused
resources ci ∗ (�μi −�μub

i ) are recycled back to the reservoir of not-yet-allocated resources and
are allocated in the following iterations. Note that, �μ(k) amount of resources are to be allocated
at each iteration until less than �μ(k) resources are left. As the final iteration, the algorithm will
then allocate the residual until all resources are used. The pseudo-code explaining the iterative
metric-based resource allocation is presented in algorithm 1.
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Algorithm 1: IRMA

input : �μeq – total upgrade budget in ◦C per asset
�μ(k) – incremental budget available in step k
c – upgrade unit cost vector
ub – asset upgrade upper bound vector in ◦C

output: �μ – asset upgrade vector in ◦C
�μ← 0;
γ ← ∂E

∂μ
;

utilizationRatio← �μ�c
�μeq

;

while utilizationRatio < 1 do
�μremaining← (1− utilizationRatio)�μeq;
�μ(k)←min{�μremaining, �μ(k)};
if �μi + γi

�μ(k)
c�γ

< ubi then

�μi←�μi + γi
�μ(k)
c�γ

end

utilizationRatio← �μ�c
�μeq

end

Using the five hottest days each year for the years between 2051 and 2100, the performance
of the PSO algorithm and the iterative metric-based method is compared in terms of the time
taken and the values of the objective function. Sampling five representative days each year for a
50-year period gives 250 weather profiles, following the approach in [28], which provides the
geographically explicit ωi variables determining the failure probability of the network assets
based on their location in the network/country. For each weather profile, five investment
scenarios are considered, �μeq ∈ [0.5, 1, 2, 4, 8]. The amount of investment is formulated as the
resources required to increase the design load for all assets in the network by �μeq. For the
1250 resulting combinations, it took the PSO algorithm 18291 s (approx. 5 h) to complete without
parallelization with 8GB RAM, while the iterative metric-based method only took 855 s (approx.
15 min) to solve without parallelization and the same RAM availability. In addition to the realistic
case study here presented, a comprehensive set of up to six-node synthetic networks is proposed
in the electronic supplementary material, section S3 to evaluate the IRMA method in comparison
with more established numerical techniques.

Figure 3 shows the value attained by the objective function using both methods against the
amount of resource input. The objective function is the expected initial service disruption in the
system when subjected to a given weather profile as a percentage of the service flow amount
with no asset failures. The method concludes that a lower objective function value is considered
optimum. From figure 3C, except �μeq = 0 with zero investment and �μeq = 8 with excessive
investment, the proposed iterative metric-based method consistently gives an objective function
that is smaller than the PSO algorithm when given the same amount of resources to distribute
between assets.

The simulation suggests that the proposed iterative metric-based method can conclude better
solutions in shorter computational time. We can compare how differently the two methods rank
the assets to upgrade, figure 3B, where the correlation is expressed in terms of Kendall’s τ − b
coefficient.

In addition, we IRMA to two distinct collections of days. The first collection comprises the five
hottest days each year for the year 2051–2100, extreme days. The second collection comprises 251
days selected using a clustering method, typical days [28]. For each day in a collection, we generate
a solution using IRMA, which is averaged along each edge to give a combined solution, figure 4.
From �μeq = 0.5 to �μeq = 8, with an increasing level of resource input, the amount of increase
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Figure4. Maps showing the resource allocation solutions obtained fromoptimizing for extremedays (A) and for typical days (B)
for different resource investment�μeq.Width of the lines indicates the increment of allocated resource in increasing an asset’s
design load�μi . The insets show the distribution of�μi against latitude for easier comparison of allocation homogeneity
with increased resource availability.

in design load between edges gradually levels out, resulting in a decrease in the inequality in
resource allocation. When resources are limited, concentrating them on fewer but more critical
assets could be more beneficial rather than distributing the resources more widely.

5. Discussion
The requirement to adapt infrastructures to a changing climate stems from the lack of anticipation
at the point of design on the conditions in which the assets would operate in a 50–100-year
horizon [28]. This involves both the design features of single assets (e.g. the design capacity of
drainage channels or, as in this case, the rail assembly to minimize thermal expansion) and the
network design (e.g. the availability of alternative paths). Our results are limited to asset-wise
interventions only, yet the outcome improves the overall network performance due to the use
of system-wide metrics. In other words, the objective function, identified as a measure of the
network throughput, is maximized through local interventions, to which resources are allocated
in an optimal way. This is a centralized allocation, as one decided by a single decision-maker for
the whole network. While this is the case for some infrastructure, it certainly is not universal.
Large infrastructure systems are usually governed at regional level and are likely to be under
multiple ownership [36,37]. For the railway network in Great Britain, the single owner and single
decision maker scenario are quite realistic representations. This is also due to the insular nature
of the land which is served by the infrastructure.

When multiple stakeholders are present, the optimal allocation problem is one of leveraging
the competition or co-operation in the network in the strategic decisions about interventions.
In this case, a spectral approach has been proposed where incentives are weighted according
to the Perron vector associated to the network, hence highlighting the role of eigenvector
centrality when competition dynamics [38], consensus dynamics [39] and possibly others, are
considered.
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In our static setting, the local marginal benefit constitutes a natural network ranking for
resilience intervention. Assets can be easily ranked by the derivative of the benefit from the
upgrade with respect to its cost. This recalls established results from linear programming as well
as the literature just cited about the network spectral characteristics, considering the geometric
interpretation of an eigenvector as the direction of maximum change. Noteworthy contributions
to that are the extension to a network setting and the asset interdependence in ensuring
the OD connectivity, hence the maximization of the expected throughput. Note also that, the
results resonate with the fundamental works in resilience of complex systems [40], as resilience
characteristics are mapped to a uni-dimensional variable, function of the local connectivity
structure of the network, through a linearization of the network dynamics. In the same way, we
connected a local metric to a global outcome, reducing the problem to a one-dimensional ranking.

The method is hence transparent in its formulation and yields results with immediate physical
interpretation. As for its application to the Great Britain rail network, in addition to what has
already been discussed about the suitability of the method, we shall note that the proposed
resource allocation appears to prioritize highly connected and used parts of the network to then
become more uniform as larger amounts of resources are available; see figure 4. Moreover, as
more resources are available, their strategic allocation becomes less critical, with many possible
allocations returning the minimization of the objective function. This is visible in figure 3, where
the correlation between the PSO (heuristic) method and our proposed approach reduces when
large upgrading resources become available (panels B and C). For limited available resources in
figure 3C, the proposed method clearly outperforms the PSO algorithm, which is chosen as a
benchmark in this case for its ability to mitigate the convergence to local minima via a multi-start
procedure.

6. Conclusion
The upgrading of the infrastructure against threats of climate change can be tackled through
investments in the network or in its operations. In this paper, we concentrated on the former,
producing a resource allocation strategy that optimizes the expected network throughput. As
different from many works in the literature on the subject, our network modelling included the
flows, which entered directly in the objective function. This surpasses the resilience evaluation
(and enhancement) based on the asset failures, focussing instead on the consequences for
the service of the asset being unavailable. This results in an approach that, through local
interventions, maximizes the traffic throughput as opposed to simply looking at the integrity
of the paths. The proposed method uses original intuitions from linear programming mixed
with an approach centred on the ranking of network elements, popular in the network science
literature. The method surpasses numerical optimizers in terms of computational speed and
flexibility, while retaining explanatory power due to its transparent formulation. This was verified
through a case study on the Great Britain freight railway network, where the loss of service
following an upgrade of the infrastructure is reduced by approximately 10% with respect to
upgrading resources allocated using numerical optimization, while also significantly reducing
the computational time.
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